CS 161 Practice Midterm I Solutions
Summer 2018 7/21/18

Multiple Choice

1.B,C,D,E

e
- =
>

o

Q

=

o

o

o
=

10. D

Short Answers

1. There are a few valid solutions.

Soln. 1 We proceed by contradiction; suppose n is (n?). Then there exist constants ¢ > 0 and ng > 0
such that n > ¢-n? for all n > ng. Dividing both sides of the equation by n gives: 1 > ¢ - n for
all n > ng. Consider n = max{ng,1/c} + 1. We have that n > ng but this choice of n causes
1 < ¢-n. We have reached a contradiction; thus, our original assumption must be false.

Soln. 2 Consider the ratio lim,, %2 In order for n to be (n?), this ratio in the limit must be some
constant ¢ > 0, less than infinity. However,

2

. n .
lim — = lim n=0c0#¢
n—,oo N n—oo

2. We proceed by induction.

e Inductive Hypothesis T'(n) < ¢; - nlog(n) + c2 for all n’: 1 <n’ <n.

e Base Case Suppose T'(1) = 1. (This is a valid assumption unless stated otherwise in the problem
statement.) Then, we have T(1) =1 < ¢; - (1) log(1) + ¢2 = cs.

e Inductive Case Suppose T'(n) < ¢1 - nlog(n) + ¢o for all n’: 1 <n’ < n. We prove it for n:

T(n)=T(n/3)+T(2n/3)+c-n
< c1(n/3)log(n/3) + co + c1(2n/3) log(2n/3) + c3 + cn
= c1(n/3)log(n) — c1(n/3)log(3) + c1(2n/3) log(n) + ¢1(2n/3) log(2) — ¢1(2n/3) log(3) + 2¢2 + cn
= cinlog(n) — cinlog(3) + ¢1(2n/3)log(2) + 2¢2 + cn

This expression is less than or equal to ¢; - nlog(n) + c2 as long as n > where d =

_ 2log(2)
3 log(3)

e Setting c¢; and ¢, to satisfy the inequalities required for the base case and inductive case in terms
of ¢ (the linear cost for each problem size) guarantees T'(n) = O(nlog(n)).

C2
deq log(3)—c

. (The last statement follows from solving the inequality for n.)

Problems

1. (a) def exponentiator(x, n):
if n ==
return x
if n % 2 == 0:
return exponentiator(x, n/2) *x 2
else:
return x * (exponentiator(x, (n-1)/2) *x 2)

(b) Most answers remotely close to the following would earn full credit (even those with only a single
case).
1 ifn=1
T(n)=<T(n/2)+1 if n%2 =0
T((n—1)/2)+2 otherwise

(c¢) Notte that T(n) < T(n/2) + 2 for all n > 1. We then use Master method on this new upper
bound recurrence relation: a =1,b = 2,d = 0, so the algorithm is O(log(n)).

2. (a) def majority_tree (root, M):
if root.left is nil:
return M[root]
return majority_tree(root.left, M)
+ majority_tree(root.middle, M)
+ majority_tree(root.right, M) >= 2

(b) def majority_tree(root, M):
if root.left is nil:
return M[root]
left = majority_tree(root.left, M)
middle = majority_tree(root.middle, M)
if left == middle:
return left
return majority_tree(root.right, M)

(c) Same as part (b), except choose a random set of two children to explore first instead of determin-
istically choosing the left and middle children. Part (b) was intended to be a strong hint for part
(¢).
def majority_tree(root, M):

if root.left is nil:

return M[root]

first_child, second_child, third_child = random_order({root.left, root.middle, root.right})
first_result = majority_tree(first_child, M)

second_result = majority_tree(second_child, M)

if first_result == second_result:

return first_result

return majority_tree(third_child, M)

(d) In the worst case, at level 4, we have inputs with 2 of one value and 1 of the other. In these cases,
we have a 1/3 chance of picking the correct two children as first_child and second_child and
we only need to recurse twice on trees at level i — 1. Otherwise, we have a 2/3 chance of needing
to recurse three times on trees at level ¢ — 1. This produces the following recurrence relation:

T({)=1/3%«2x«T(i—1)+2/3%x3«T(i—1)=8/3T(i —1)

To determine the value of the root, we expect to inspect at most 8/3 of its children, and 8/3 of
their children, etc. Since n = 3", we have h = logs(n). So starting at level h, we expect to inspect
at most (8/3)" = (8/3)l9s(n) = plegs(8/3) — O(n09) leaves. This is an upper bound since we
assumed a worst-case scenario for our tree.

(e) Suppose an algorithm decides not to check one of the leaves. Its possible to construct an assign-
ment of the other leaves that requires the value of this leaf to be known, such that all of the
internal vertices along the path from the root to this leaf are “split decisions.”

(f) Same as the advantage of randomized quicksort vs. quicksort; an adversary cannot construct a
worst-case input i.e. the randomized algorithm reduces the expected number of leaves checked by
the algorithm for a worst-case input.

(a) Run BFS, color every other vertex a different color, and return true if we every try to color a
vertex different colors. This is an instance in which writing an English description is much easier
and quicker than writing pseudocode. This will often be the case for algorithms which require
calls to existing algorithms we’ve learned in class.

(b) BFS runs in O(|V| + |E|)-time, so this algorithm runs in O(|V| + | E|)-time.

