
CS 161 Homework 5
Summer 2018 Due: Friday 8/10 at 5 p.m. on Gradescope

Exercises

Exercises should be completed on your own.

1. (Warmup with MSTs) (7 pt.)

In all of the following questions, assume that G is an undirected, connected graph on n nodes with
distinct, positive edge weights. Also assume that G is simple (no self-loops and no multi-edges) in all
parts.

You might find the following “cycle property” useful and can reference it without proof (although you
might want to convince yourself of it!): The most expensive edge on any cycle does not belong to MST
(when edge weights are distinct).

(a) (1 pt.) Consider the edges of G sorted in increasing order of weight and place the first n − 1
edges into a set S. In other words, S is the set of n− 1 edges with the smallest weights.

Prove or disprove: S is a minimum spanning tree in G (assume n ≥ 2).

[We are expecting: Either a formal proof or a counterexample.]

(b) (2 pt.) Prove or disprove: There is a unique minimum spanning tree in G.

[We are expecting: Either a formal proof or a counterexample.]

(c) (4 pt.) Let T be a minimum spanning tree of G and e be some edge in G (which may or may
not belong to T ). Suppose we obtain a new graph G′ from G by preserving everything the same
except that we decrease the weight of e (but assume that the weights of all edges in G′ are still
distinct). Design an algorithm that can find a minimum spanning tree T ′ of G′ in O(|V |)-time,
given G, T , e and its newly decreased weight w.

[We are expecting: An English description of the algorithm, and brief justification
of its runtime.]

1



Problems

You can collaborate with your classmates about the problems. However:

• Try the problems on your own before collaborating.

• Write up your solutions yourself, in your own words. You should never share your typed-up solutions
with your collaborators.

• If you collaborated, list the names of the students you collaborated with at the beginning of each
problem.

1. (k-friendliness) (4 pt.)

Suppose you model the friendships of students in CS 161 as an undirected graph G = (V,E) (i.e.
there is an edge between students A and B if they are friends). For any integer k, we say that a
group of students, S ⊂ V , is “k-friendly” if every student in S has at least k friends in S. Design an
O(|V |+ |E|)-time algorithm which, given the graph G and an integer k > 0, finds the largest set S ⊂ V
that is k-friendly; if no such set exists, then the algorithm should say so.

[We are expecting: An English description of the algorithm and brief justification of its
runtime.]

2. (Placing receivers) (11 pt.)

Suppose there are n transmitters fixed in place along a linear track. The i’th transmitter has com-
munication range [ai, bi], for ai ≤ bi: that is, any receiver placed within the range [ai, bi] can receive
signals from the i’th transmitter. Assume that the transmitters are sorted by the right endpoint of
their communication range: that is, if i < j, then bi ≤ bj .

We want to pick a set of points on the track to place receivers such that we can receive signals from
every transmitter while minimizing the number of receivers necessary. In other words, we want to find
a minimum set of points S on the line such that for every transmitter i, there is some receiver s ∈ S
such that ai ≤ s ≤ bi.

In this problem, we describe a greedy algorithm that finds the minimum set S of receiver locations
in expected time O(n), and prove that it is correct.

Suppose the greedy algorithm which works as follows: we place receivers one at a time. At each step,
suppose that i∗ is the smallest i so that transmitter i cannot be heard by any receiver placed so far,
and place a receiver at bi∗ . Continue placing receivers in this way until all the transmitters can be
heard.

(a) (2 pt.) Based on this English description, write pseudocode to implement the algorithm in time
O(n). Assume the input to your algorithm is two arrays, a, and b, which contain the values of ai
and bi in the order described above.

[We are expecting detailed pseudocode, and an informal justification of the running
time.]

(b) (9 pt.) Prove that this algorithm is correct (in terms of both legality and optimality), following
the outline below.

We recommend induction on i, using a greedy stays ahead or greedy exchange argument.

i. (3 pt.) State your inductive hypothesis.

ii. (1 pt.) Prove the base case.

iii. (4 pt.) Prove the inductive step.
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iv. (1 pt.) Finish the argument: once the induction argument is complete, show that this implies
that the algorithm is correct.

[We are expecting: For (i), a statement of an inductive hypothesis. For (ii), (iii),
(iv), we are expecting a formal proof, including a statement of what it is you are
proving.]

3. (Min Gradespan) (4 pt.)

An analog of the following problem arises when you are trying to assign jobs to servers; while the
greedy algorithm will not be optimal, it comes pretty close.

Suppose the course staff has n exams to grade, and there are k course assistants (CAs) who will be
doing the grading. We can all tell the exact amount of time it will take to grade a given exam (from
glancing at the handwriting and text density), and all the CAs would take this exact amount of time to
grade that exam. I want to divide the set of n exams among the CAs so as to minimize the maximum
amount of time it will take any of the CAs to grade (i.e. we will all wait until the last CA is done
grading their pile, and I want to minimize the total time from when we all start grading, until this last
CA is done.)

Suppose I start with the stack of exams, and want to divide the exams into the k stacks by stepping
through the pile of exams just once—namely, when I look at the ith exam, I will immediately know
how long it takes to grade, and then assign it to one of the k CA piles. Suppose I do this by keeping
track of the total grading time of each stack, and assigning the next exam to the stack that currently
has the shortest grading time.

(a) (1 pt.) Describe a concrete instance of this problem involving n = 3 exams and k = 2 CAs that
illustrates that this algorithm will not always result in the optimal allocation.

Specifically, give a list of the three grading times such that the greedy algorithm will result in one
of the two CAs spending longer than necessary, and describe both the optimal allocation of the
exams to the two piles, and the allocation that the greedy algorithm will choose.

[We are expecting: An example.]

(b) (3 pt.) Prove that the allocation given by the greedy algorithm will be suboptimal by at most
a factor of 2. Namely, if there exists an allocation of the n exams into k piles such that all CAs
can finish grading within time topt, prove that in the allocation chosen by the greedy algorithm,
the maximum time will be at most 2 · topt. [Hint: what can you say about the amount of grading
time that the longest-working CA would have had, if the last exam did not exist?]

[We are expecting: A formal proof.]

(c) (0 pt., Food for thought) How much can you improve this factor-of-two ratio of greedy and
opt (i.e. this factor of 2 “competitive ratio” of the greedy algorithm) if you sort the exams in
decreasing order of grading time before running the greedy algorithm?

[We are not expecting anything.]
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