CS 161 Tutorial 3: Linear-Time Sorting
Summer 2018 Randomized Algorithms

7/12/18

Linear-Time Sorting

1. (Fun with radix sort) (Difficulty: Easy)

Suppose you want to alphabetize the following list of four letter words in ascending a-z alphabetical
order with radix sort: [byte, pits, bits, pins]. Recall that radix sort calls bucket sort as a

subroutine.
[We are expecting: A list consisting of four elements for each of the parts.]

(a) After the first call to bucket sort, what is the order of the list?

(b) After the second call to bucket sort, what is the order of the list?

(c) After the third call to bucket sort, what is the order of the list?

(d) After the fourth call to bucket sort, what is the order of the list?

2. (20-questions?) (Difficulty: Hard)

Suppose you want to sort an array A of n numbers (not necessarily distinct), and you are guaranteed
that all the numbers in the array are in the set {1,...,k}. A “20-question sorting algorithm”
is any deterministic algorithm that asks a series of YES/NO questions (not necessarily 20 of them,
that’s just a name) about A, and then writes down the elements of A in sorted order. (Specifically, the
algorithm does not need to rearrange the elements of A, it can just write down the sorted numbers in
a separate location).

Note that there are many YES/NO questions beyond just comparison-questions— for example, the
following are also valid YES/NO questions: “If I ignored A[3] and A[17] would the array be sorted?”
and “Did it rain today?”

(a) Describe a 20-question sorting algorithm that, for every input, asks only O(klogn) questions. For
now, assume that the algorithm accepts n and k as input.
[We are expecting: A description of the algorithm and a brief justification for its
runtime.]

(b) Now suppose the algorithm does not accept n or k as input. Describe an algorithm that determines
these values and still asks only O(klogn) questions.
[We are expecting: A description of the algorithm and a brief justification for its
runtime.]

(c) Prove that for every 20-question sorting algorithm, there exists some array A consisting of n
integers between 1 and & that will require Q(klog %) questions, provided k& < n.
[We are expecting: A mathematically rigorous proof (which does NOT necessarily
mean something long and tedious).]

Randomized Algorithms

1. (Big Problem) (Difficulty: Easy)

Suppose not-so-many years from now, you're a fancy boss-person at a large tech company. Your com-
pany relies on solving BigProblem quickly—specifically, after rigorous market testing, you determine
that if you solve the problem in less than 10 seconds, all is well. If, however, it takes more than 10
seconds, then your users go away. For example, maybe BigProblem is the computational problem of
matching a user to an Uber driver—if it takes more than 10 seconds, the user will have already closed
the app and tried their luck with Lyft. One day, an engineer tells you that they have a randomized
algorithm that correctly solves BigProblem and has the property that, for every input, the expected
runtime is 1 second. Assume throughout this problem that you know nothing else about the engineers
implementation other than the expected runtime.

(a) Prove that the probability that the randomized algorithm takes more than 10 seconds to run is
at most 1/10 = 0.1. Feel free to use Markov’s inequality, which states that for any non-negative
random variable, X, and any positive constant ¢, Pr[X > cE[X]] < 1/c.

[We are expecting: A short proof (1 sentence) using Markov’s inequality.]

(b) Let BigProblem1() be the engineer’s original implementation. You propose an approach to
improve the above bound, expressed via the following pseudocode:

BigProblem2(input x):
run BigProblemi (x)
if the execution has not terminated after 8 seconds
abort the execution
run BigProbleml(x) again (from scratch)
else:
return the output of the original execution.

Prove that the probability that your improved implementation, BigProblem2(), does not termi-
nate within 10 seconds is at most 1/16 < 0.07. (Progress!!) Assume successive executions of
BigProbleml1 () are independent.

[We are expecting: A short proof (1 sentence) using rules of probability and Markov’s
inequality.]

2. (Colinear points) (Difficulty: Medium)

You are given n distinct ordered pairs of integers (z1,41), (2, y2), - - ., (Tn,Yn), where for all 4, j, x; # x;
and y; # y;. Recall two points uniquely define a line y = mx + b, with slope m and intercept b. We say
a set of points S is collinear if they all fall on the same line; that is, for all (x;,y;) € S, y; = mx; + b
for some fixed m and b. You need to find the maximum cardinality subset of the given points A which
are collinear. Assume that, given two points, you can compute the corresponding m and b for the line
passing through them in constant time, and you can compare two slopes or two intercepts in constant
time. Your algorithms should not use any form of hashing.

(a) Design an algorithm to find a maximum cardinality set of collinear points in O(n?logn)-time. If
there are several maximal sets, your algorithm can output any such set.

[We are expecting: An English description of your algorithm and a brief justification
of its runtime.]

(b) Tt is not known whether we can solve this collinear points problem in under O(n?) time. But
suppose we know that our maximum cardinality set of collinear points consists of exactly n/k
points for some constant k. Design a randomized algorithm that reports the points in some
maximum cardinality set in expected O(n)-time. (Hint: your running time may also be expressed
as O(k®n)). Briefly justify the correctness and runtime of the algorithm.

[We are expecting: An English description of your algorithm and a brief justification
of its expected runtime.]

(¢c) What is the worst-case runtime of your algorithm from part (b)?
[We are expecting: A runtime expressed in Big-O, with a short explanation.]

Hash Functions

1. (Fun with hash functions) (Difficulty: Easy)

Consider the universe U of alphabetic strings of exactly length 8 (teardown, meetings, and abcdefgh
are part of this universe, but te@rdown, meeting, and 12345678 are not part of this universe). Let H
be the exhaustive set of hash functions mapping this particular universe to the buckets {1,...,n}.

[We are expecting: Short answers for each of the parts.]

(a) What is the size of the universe |U|?

(b) How many hash functions are in H?

(c) How many bits are required to write down the name of one hash function from #?

(d) Is H a universal hash family?

(e) Suppose we draw hash function A uniformly at random from H. What is the probability that
h(teardown) = h(teardown)?

(f) For the same hash function h, what is the probability that h(meetings) = h(teardown)?

(g) Now suppose we draw two hash functions h; and hs uniformly at random from H. What is the
probability that hj(teardown) = hao(teardown)?

2. (An exhausting set of hash functions) (Difficulty: Medium)

In this problem, we’ll investigate the definition of universal hash functions. Let U/ denote a universe of
size M, and let n be the number of buckets in a hash table.

(a) Let H be the family of all possible functions mapping from U to {1,...,n}. Prove that, for all
x; # x; in U, for h randomly chosen from H,

Prih(z;) = h(z;)] = l
n

This shows that is a universal hash family, and moreover that we have equality in the definition

of the universal hash family property, not just a < relationship.

[We are expecting: A careful and rigorous proof, though it should not need to be

more than one or two paragraphs. You should be especially careful about what is

random and what is not.]

(b) There also exist hash families such that, for all «; # z; in U, for h randomly drawn from the
family, Pr{h(z;) = h(z;)] < +. (Notice that the inequality here is strict!) We will now explore
one such family. Consider H' = H \ {h1}, where h; is the function defined by

hi(z;) =1 for all T €U.

That is, H' is the family of all functions from U to {1,...,n} except for the function h; which
sends all elements of U to 1.

Prove that, for all 2; # z; in U, for h drawn randomly from H’, we have
1
Prlh(ai) = hiay)] <

[We are expecting: A clear and rigorous proof. As above, this needn’t be more than
a paragraph of two, but you should be very careful about what is random and what
is not.]

