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Tree Algorithms

1. (a) (b)

2. (a) Let r(T ) denote the root of tree T . Note the depth of node x in T is equal to the length of the
path from r(T ) to x. Hence, P (T ) =

∑
x∈T d(x, T ).

For each node x in TL, the path from r(T ) to x consists of the edge r(T ), r(TL)) and the path
from r(TL) to x. The same reasoning applies for nodes x in TR. Equivalently, we have

d(x, T ) =


0 if x = r(T )

1 + d(x, TL) if x ∈ TL

1 + d(x, TR) if x ∈ TR

Then, ∑
x∈T

d(x, T ) = d(r(T ), T ) +
∑
x∈TL

d(x, T ) +
∑
x∈TR

d(x, T )

= 0 +
∑
x∈TL

[1 + d(x, TL)] +
∑
x∈TR

[1 + d(x, TR)]

= |TL|+ |TR|+
∑
x∈TL

d(x, TL) +
∑
x∈TR

d(x, TR)

= n− 1 + P (TL) + P (TR)

(b) Let T be a randomly built binary search tree with n vertices. Without loss of generality, we
assume the n keys are {1, . . . , n}.
By definition, P (n) = ET [P (T )]. Then,

P (n) = ET [P (TL) + P (TR) + n− 1]

= n− 1 + ET [P (TL)] + ET [P (TR)]

Notice that

ET [P (TL)] =

n∑
i=1

ET [P (TL)|r(T ) = i] · Pr(r(T ) = i)

.

Since each element is equally likely to be the root of T , Pr(r(T ) = i) = 1/n for all i. Conditioned
on the event that element i is the root, TL is a randomly built binary search tree on the first i− 1
elements. To see this, assume we picked element i to the root. From the point of view of the
left subtree, the elements 1, . . . , i− 1 are inserted into the subtree in a random order, since these
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elements are inserted into T in a random order and subsequently go into TL in the same relative
order. Hence, ET [P (TL)|r(T ) = i] = P (i− 1). Putting these together, we get

ET [P (TL)] =

n∑
i=1

1

n
P (i− 1)

. Similarly, we get ET [P (TR)] =
∑n

i=1
1
nP (n− i). Then,

P (n) = n− 1 + ET [P (TL)] + ET [P (TR)]

= n− 1 +
1

n

n∑
i=1

[P (i− 1) + P (n− i)]

= n− 1 +
1

n

n−1∑
i=0

[P (i) + P (n− i− 1)].

(c) This is the same recurrence that appears in quicksort.

(d) In words, our algorithm does the following:

• Constructs a randomly built binary search tree T by inserting given elements in a random
order

• Traverses T in order to get a sorted list.

The first step takes O(n log(n))-time in expectation. We observe that given the final state of tree
T , we can compute the amount of work spent to construct T . To insert a node x at depth d, we
traversed exactly the path from the root to the parent of x, at depth d − 1, to insert it. Hence,
we can upper bound the total work done to construct T by O(P (T )) = O(n log(n)). The second
step takes O(n)-time, so overall, the algorithm takes O(n log(n))-time.
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Graph Algorithms

1. (a) DFS: E,B,D,C,A; BFS: A,B,C,D,E.

(b) DFS: E,B,C,D,A; BFS: A,B,C,D,E.

2. This solution only works on DAG’s.

def dfs(G, start_v):

for v in G.vertices:

v.status = "unvisited"

# Stack

stack = []

cur_time = 0

stack.append(start_v)

while not len(stack) == 0:

# Peaks at the top vertex from stack

u = stack.peak()

if u.status == "done":

stack.pop()

continue

if u.status == "unvisited":

u.status = "in_progress"

u.start_time = cur_time

cur_time += 1

all_done = True

# Iterates through neighbors in reverse order

for v in u.neighbors[::-1]:

if v.status != "done":

stack.append(v)

all_done = False

if all_done:

u.status = "done"

u.end_time = cur_time

cur_time += 1

stack.pop()
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3. In words, our algorithm does the following:

• Constructs a graph with a vertex v for each value 0, . . . , T − 1.

• For each si ∈ {s1, s2, . . . , sk}, add edges from vertex v to vertex (v + si) mod T .

• Start at vertex (
∑

i si) mod T and run BFS to find vertex 0, and return the length of the shortest
path.

This algorithm takes O(T )-time to construct the vertices, O(kT )-time to construct the edges, O(k)-time
to compute the start vertex and O(T + kT )-time to BFS to find vertex 0.

4. (a) • x̄1 → x2, x̄2 → x1

• x1 → x3, x̄3 → x̄1

• x2 → x̄3, x3 → x̄2

(b)

x1 x̄1

x2 x̄2

x3 x̄3

(c) SCCs represent nodes that share the same state. If one node in an SCC is set to true, the
implication graph forces all variables in that SCC to be set to true. If x and x̄ were inside of
the same SCC, this means that the original 2SAT problem has no solution because it is logically
impossible for x to be both true and false, but the implication graph would require that.

(d) First, to show that there is a corresponding component C̄, we observe that if there is a cycle a→
b→ . . .→ z in C, we must have a corresponding cycle z̄ → ȳ → . . .→ ā in C̄. Therefore, any cycle
our component has must also exist somewhere else in the graph, which defines a corresponding
component.

There might be an edge from C̄ to C. However, it’s impossible for an edge to exist in the reverse
direction from C to C̄. To see why, consider that by definition of a sink vertex, C does not have
any exiting edges, so the only way for there to exist an edge from C to C̄ is if there also existed
an edge from C̄ back to C i.e. C and C̄ were part of the same connected component. However,
variables and their negations cannot be part of the same SCC; therefore, there must not exist an
edge from C to C̄.

(e) We go through the components in reverse-topological order. We set the nodes in the component
to true, and also set the nodes in the corresponding component to false.
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