
CS 161 Practice Final I Solutions
Summer 2018 8/12/18

Multiple Choice

1. (a) A, C; (b) A, B, C, E; (c) D; (d) A

2. (a) D; (b) D

3. E

4. A, B, D

5. A

6. (a) A; (b) A

7. C

8. (a) A; (b) A; (c) A

9. B

10. (a) E; (b) B

11. B

12. D

13. (a) D; (b) D

14. (a) A, D, E; (b) C

Short Answers

1. All three algorithmic paradigms involve expression larger subproblems in terms of smaller subprob-
lems. However, divide-and-conquer exhaustively explores all subproblems, including solving repeated
subproblems multiple times; dynamic programming exhaustively explores all subproblems, but caches
the answers to solved subproblems so that each subproblem only gets solved once; and greedy doesn’t
exhaustively explore all subproblems—instead it only explores the locally optimal subproblem.

2. The Ω(n log(n))-time lower bounds comparison-based sorting algorithms; however, linear-time sorting
algorithms leverages prior knowledge about the distribution and structure of the elements being sorted
to avoid exhaustive comparisons.

3. Consider a graph G with three vertices A, B, and C with edges (A,B), (B,C), (A,C) with edge weights
w(A,B) = 2, w(B,C) = −2, and w(A,C) = 1. The shortest path from A to C is via B; however,
Dijkstra’s algorithm will not find this path. Adding 2 to all of the edge weights will not help either.
In the modified graph G′, w(A,B) = 4, w(B,C) = 0, and w(A,C) = 3, and Dijkstra’s algorithm will
not find this path.

Dijkstra’s algorithm still doesn’t work because paths are unfairly penalized for the number of edges in
the path and not evaluated solely on the weight of the edges in the path.
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4. Here are the matches:

When might you prefer breadth-first
search to Dijkstra’s algorithm?

When might you prefer
Floyd-Warshall to Bellman-Ford?

When might you prefer Bellman-Ford
to Dijkstra’s algorithm?

When the graph has negative edge
weights.

When the graph is unweighted.

When you want to find the shortest
paths between all pairs of vertices.

When you want to find the shortest
paths from a specific vertex s to any

other vertex t.

5. The value of any flow f is at most the value of any s-t cut S, V \ T . Surprisingly, there exists a flow
fmax and s-t cut Smin and T = V \ Smin whose values are equal!

Problems

1. (a) There are a few valid solutions.

Soln. 1 Let T (i, 0) be the length of the longest zig-zag sequence ending at exactly element i with that
element being greater than the previous element in the sequence. Let T (i, 1) be the length
of the longest zig-zag sequence ending at exactly element i with that element being less than
the previous element in the sequence.

T (i, 0) = max
k<i:A[k]<A[i]

T (k, 1) + 1

T (i, 1) = max
k<i:A[k]>A[i]

T (k, 0) + 1

Soln. 2 Let T (i, 0) be the length of the longest zig-zag subsequence of A[0 : i+1) with the last element
in the subsequence being greater than the second-to-last element. Let T (i, 1) be the length
of the longest zig-zag subsubsequence in A[0 : i+ 1) with the last element in the subsequence
being less than the second-to-last element.
This approach is tricky; in order for it to work, you need to store the value or index of the
last element in the subsequence for each T (i, 0) and T (i, 1), denoted below as T (i, 0).last and
T (i, 1).last.

T (i, 0) = max{T (i− 1, 0), (T (i− 1, 1) + 1) · 1[T (i− 1, 1).last < A[i]]}
T (i, 1) = max{T (i− 1, 1), (T (i− 1, 0) + 1) · 1[T (i− 1, 0).last > A[i]]}
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(b) def zigZag(A):

n = len(A)

DP = {}

DP[(0, 0)] = DP[(0, 1)] = 1

for i in range(n):

opt0 = [DP[(k, 1)] + 1 if A[k] < A[i] else 0 for k in range(i)]

DP[(i, 0)] = max(opt0)

opt1 = [DP[(k, 0)] + 1 if A[k] > A[i] else 0 for k in range(i)]

DP[(i, 1)] = max(opt1)

# Returns the maximum value in DP

return max(DP)

(c) The two approaches are backtracking or maintaining an additional data structure with the cached
information.

2. (a) def prioritize(tasks):

# Suppose tasks is a list of (taskId, deadline) tuples

sortedTasks = sorted(tasks, key=lambda t: t[1]) # sorts tasks by increasing deadlines

curTime = 0

todo = []

for i in range(n):

taskId, deadline = sortedTasks[i]

if deadline >= curTime + 1:

todo.append(taskId)

curTime += 1

(b) (i) After t tasks have been added to todo, there exists a feasible and optimal solution T ∗ such
that T ∗[0, . . . , t− 1] = todo[0, . . . , t− 1].

(ii) After 0 tasks have been added to todo, it’s an empty list. All feasible and optimal solutions
must contain the empty list.

(iii) Suppose the inductive hypothesis holds for t. Here, we prove it holds for t + 1.
Let T ∗ be an optimal schedule such that T ∗[0, . . . , t−1] = todo[0, . . . , t−1]. Suppose we add
task i as todo[t] but T ∗ assigns task j 6= i as T ∗[t] such that j is the task with the earliest
deadline of the tasks remaining in T ∗. Exchanging task j for task i in T ∗ results in a new
schedule T ∗new, and we claim this schedule is still feasible and optimal.
This schedule is still feasible since:

• Tasks 0 to t− 1 are feasible by the inductive hypothesis.

• Task t can be finished by its deadline with tasks 0 to t−1 already scheduled by construction
of the algorithm.

• Tasks t+1 to n−1 can be done by their deadlines given task i since the completion of task
i in todo must be no later than the completion of task j in T ∗ since the greedy algorithm
assigns it the earliest available time, given that t tasks have already been assigned.

This schedule is optimal since it has the same number of tasks as an optimal schedule.
Thus, T ∗new is feasible and optimal.

(iv) Suppose the inductive hypothesis holds for j = t∗ where t∗ is the length of an optimal
schedule. Then there exists a T ∗ such that T ∗[0, . . . , t∗ − 1] = todo[0, . . . , t∗ − 1]. In other
words, todo = T ∗. Thus, the algorithm returns a feasible and optimal schedule, as desired.
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(c) def weighted_prioritize(tasks):

# Suppose tasks is a list of (taskId, deadline, value) tuples

sortedTasks = sorted(tasks, key=lambda t: t[2])

reverseSortedTasks = sortedTasks[::-1] # sorts tasks by decreasing values

deadlines = [t[1] for t in tasks]

timeSlots = [True for _ in range(max(deadlines))]

todo = []

for i in range(n):

taskId, deadline, value = reverseSortedTasks[i]

flooredDeadline = floor(deadline)

j = flooredDeadline - 1

while j >= 0:

if timeSlots[j]:

break

if j >= 0:

timeSlots[j] = False # mark timeslot as unavailable

todo.append(taskId)

(d) In words, our algorithm proceeds as follows: construct and complete a table S where S(i, t)
represents the value of the optimal schedule using a subset of the tasks {0, . . . , i − 1} and only
using time up until t. This satisfies the recurrence:

S(i, t) =

{
max{S(i− 1, t), vi + S(i− 1, t− ti)} if di ≥ t

S(i, t) = S(i− 1, t) otherwise

Backtrack to return the optimal schedule.
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