Multiple Choice

1. (a) A, C; (b) A, B, C, E; (c) D; (d) A
2. (a) D; (b) D
3. E
4. A, B, D
5. A
6. (a) A; (b) A
7. C
8. (a) A; (b) A; (c) A
9. B
10. (a) E; (b) A
11. B
12. D
13. (a) D; (b) D
14. (a) A, D, E; (b) C

Short Answers

1. All three algorithmic paradigms involve expression larger subproblems in terms of smaller subprob-
lems. However, divide-and-conquer exhaustively explores all subproblems, including solving repeated
subproblems multiple times; dynamic programming exhaustively explores all subproblems, but caches
the answers to solved subproblems so that each subproblem only gets solved once; and greedy doesn’t
exhaustively explore all subproblems—instead it only explores the locally optimal subproblem.

2. The $\Omega(n \log(n))$-time lower bounds comparison-based sorting algorithms; however, linear-time sorting
algorithms leverages prior knowledge about the distribution and structure of the elements being sorted
to avoid exhaustive comparisons.

3. Consider a graph G with three vertices A, B, and C with edges (A, B), (B, C), (A, C) with edge weights
$w(A, B) = 2$, $w(B, C) = -2$, and $w(A, C) = 1$. The shortest path from A to C is via B; however,
Dijkstra’s algorithm will not find this path. Adding 2 to all of the edge weights will not help either.
In the modified graph G', $w(A, B) = 4$, $w(B, C) = 0$, and $w(A, C) = 3$, and Dijkstra’s algorithm will
not find this path.

Dijkstra’s algorithm still doesn’t work because paths are unfairly penalized for the number of edges in
the path and not evaluated solely on the weight of the edges in the path.
4. Here are the matches:

- When might you prefer breadth-first search to Dijkstra’s algorithm?
 - When the graph has negative edge weights.
 - When the graph is unweighted.

- When might you prefer Floyd-Warshall to Bellman-Ford?
 - When you want to find the shortest paths between all pairs of vertices.

- When might you prefer Bellman-Ford to Dijkstra’s algorithm?
 - When you want to find the shortest paths from a specific vertex s to any other vertex t.

5. The value of any flow f is at most the value of any s-t cut $S, V \setminus T$. Surprisingly, there exists a flow f_{max} and s-t cut S_{min} and $T = V \setminus S_{\text{min}}$ whose values are equal!

Problems

1. (a) There are a few valid solutions.

 Soln. 1 Let $T(i, 0)$ be the length of the longest zig-zag sequence ending at exactly element i with that element being greater than the previous element in the sequence. Let $T(i, 1)$ be the length of the longest zig-zag sequence ending at exactly element i with that element being less than the previous element in the sequence.

 \[
 T(i, 0) = \max_{k : A[k] < A[i]} T(k, 1) + 1 \\
 T(i, 1) = \max_{k : A[k] > A[i]} T(k, 0) + 1
 \]

 Soln. 2 Let $T(i, 0)$ be the length of the longest zig-zag subsequence of $A[0 : i+1]$ with the last element in the subsequence being greater than the second-to-last element. Let $T(i, 1)$ be the length of the longest zig-zag subsequence in $A[0 : i+1]$ with the last element in the subsequence being less than the second-to-last element.

 This approach is tricky; in order for it to work, you need to store the value or index of the last element in the subsequence for each $T(i, 0)$ and $T(i, 1)$, denoted below as $T(i, 0).\text{last}$ and $T(i, 1).\text{last}$.

 \[
 T(i, 0) = \max\{T(i - 1, 0), (T(i - 1, 1) + 1) \cdot 1[T(i - 1, 1).\text{last} < A[i]]\} \\
 T(i, 1) = \max\{T(i - 1, 1), (T(i - 1, 0) + 1) \cdot 1[T(i - 1, 0).\text{last} > A[i]]\}
 \]
(b) `def zigZag(A):
 n = len(A)
 DP = {}
 DP[(0, 0)] = DP[(0, 1)] = 1
 for i in range(n):
 opt0 = [DP[(k, 1)] + 1 if A[k] < A[i] else 0 for k in range(i)]
 DP[(i, 0)] = max(opt0)
 opt1 = [DP[(k, 0)] + 1 if A[k] > A[i] else 0 for k in range(i)]
 DP[(i, 1)] = max(opt1)
 # Returns the maximum value in DP
 return max(DP)
`
(c) def weighted_prioritize(tasks):
 # Suppose tasks is a list of (taskId, deadline, value) tuples
 sortedTasks = sorted(tasks, key=lambda t: t[2])
 reverseSortedTasks = sortedTasks[::-1] # sorts tasks by decreasing values

deadlines = [t[1] for t in tasks]
timeSlots = [True for _ in range(max(deadlines))]
todo = []
for i in range(n):
 taskId, deadline, value = reverseSortedTasks[i]
flooredDeadline = floor(deadline)
j = flooredDeadline - 1
while j >= 0:
 if timeSlots[j]:
 break
 if j >= 0:
 timeSlots[j] = False # mark timeslot as unavailable
 todo.append(taskId)

(d) In words, our algorithm proceeds as follows: construct and complete a table S where $S(i,t)$ represents the value of the optimal schedule using a subset of the tasks $\{0, \ldots, i-1\}$ and only using time up until t. This satisfies the recurrence:

$$S(i,t) = \begin{cases}
\max\{S(i-1,t), v_i + S(i-1,t-t_i)\} & \text{if } d_i \geq t \\
S(i,t) = S(i-1,t) & \text{otherwise}
\end{cases}$$

Backtrack to return the optimal schedule.