
CS 161 Practice Final I
Summer 2018 Released: 8/12/18

Multiple-choice (70 pt.)

1. (8 pt.) Which of the options correctly describe each of the following quantities?

(a) (2 pt.) The function f(n), where f(n) = n log2(n). Note that the bounds do not necessarily
need to be tight. Circle all that apply.

(A) O(n2) (B) Θ(n2) (C) Ω(n log log(n)) (D) O(n) (E) O(log2(n)).

(b) (2 pt.) T (n) given by T (n) = T (bn/5c) + T (b7n/10c) + Θ(n) with T (n) = 1 for n ≤ 5. Note
that the bounds do not necessarily need to be tight. Circle all that apply.

(A) Ω(n) (B) O(n) (C) O(n log(n)) (D) Ω(n2) (E) O(n2).

(c) (2 pt.) Consider the following divide-and-conquer algorithm.

def mystery (int m, int n):

if m <= 0 or n <= 0:

return None

if m == n:

return m

else if m > n:

return mystery(m-n, n)

else:

return mystery(m, n-m)

What does the mystery compute for positive integers m and n?

Note that mod represents the modulo operator (i.e. 13 mod 5 is 3) and gcd represents the greatest
common divisor (i.e. gcd(24, 36) is 12).

(A) ceil(m/n) (B) max(m-n,n-m) (C) m mod n (D) gcd(m,n) (E) m*n.

(d) (2 pt.) T (n), which is the runtime of mystery. Your bound should be tight.

(A) O(m + n) (B) Θ(mn) (C) O(m log(n)) (D) O(n) (E) O(min{m,n}).

1

2. (4 pt.) Suppose you want to alphabetize the following list of three letters words in ascending a-z
alphabetical order with radix sort: [dog, lot, caw, log, dot]. Recall that radix sort calls bucket
sort as a subroutine.

(a) (2 pt.) After the first call to bucket sort, what is the order of the list?

(A) [dog, log, dot, lot, caw].

(B) [caw, dog, dot, log, lot].

(C) [caw, dog, dot, lot, log].

(D) [dog, log, lot, dot, caw].

(b) (2 pt.) After the second call to bucket sort, what is the order of the list?

(A) [caw, dog, log, dot, lot].

(B) [caw, dog, dot, log, lot].

(C) [caw, dog, dot, lot, log].

(D) [caw, dog, log, lot, dot].

3. (4 pt.) Let H be a universal family of hash functions mapping a universe of keys U to one of n values
{1, 2, . . . , n}. For some x, y ∈ U such that x 6= y, the number of hash functions h ∈ H for which
h(x) = h(y) is at most:

(A) |U |/n (B) n/|H| (C) n/|U | (D) 1/n (E) |H|/n.

4. (4 pt.) Consider a binary tree T = (V,E) where |v| denotes the number of vertices in the subtree
rooted at vertex v. Let n = |T.root|.
Suppose vertices of T satisfy the invariant that for v ∈ V , |v.left| = b|v.right|/2c when |v| ≥ 4 and
|v.right| = |v| − 1 otherwise i.e. there are about twice as many vertices in the subtree rooted at v’s
right child than the subtree rooted at its left child; if there aren’t enough vertices left, then the right
child receives the remaining vertices. Which of the following bounds the number of edges in a path
from the root of T to any leaf? Circle all that apply.

(A) Ω(log3(n)) (B) O(log3/2(n)) (C) Ω(log3/2(n)) (D) O(log2(n)) (E) Ω(n log(n))

5. (4 pt.) Let monty be some Monte Carlo algorithm which gives the correct solution for a problem
with probability at p1, independent of the input. How many independent executions of monty suffice
to increase the probability of obtaining a correct solution to at least p2? Assume 0 < p1 < p2 < 1.

(A)
log(1− p2)

log(1− p1)
(B)

log(1− p1)

log(1− p2)
(C)

log(p1)

log(p2)
(D)

log(p2)

log(p1)
(E)

1− p1
1− p2

.

2

6. (8 pt.) Let Uk be the universe of all strings consisting of k numeric digits. (0000, 0123, and 0101 are
part of universe U4 but 000a, 012, and 0!0! are not.) Let ui denote the ith digit of a string u ∈ Uk

where 0 ≤ i < k, so u0 is 0 and u1 is 2 for string 0246.

Let Hk be a family of k hash functions mapping universe Uk to values {0, 1, 2, . . . , 9} where h0 ∈ Hk

hashes all strings according to their first digit. (For all strings u where u0 = 0, h0(u) = 0; for all strings
u where u0 = 1, h0(u) = 1; for all strings u where u0 = 9, h0(u) = 9.) Likewise, h1 ∈ Hk hashes all
strings according to their second digit. Generally, for all strings u ∈ Uk where ui = x, hi(u) = x for
0 ≤ i < k.

(a) (4 pt.) Which of the following statements that are true? Circle all that apply.

(A) H1 is universal for the entire universe U1.

(B) H2 is universal for the entire universe U2.

(C) H3 is universal for the entire universe U3.

(D) H4 is universal for the entire universe U4.

(b) (4 pt.) H5 is not universal for the entire universe U5, but there exist subsets of U5 for which it
is universal. Which of the following subsets of U5 is H5 universal? Circle all that apply.

(A) {00000, 11111, 22222, 33333, 44444}.
(B) {00000, 01234}.
(C) {00000, 11111, 01234}.
(D) {00000, 11111, 22222, 33333, 44444, 01234}.

7. (4 pt.) Which of the following correctly characterizes the advantage of partitioning around a random
pivot selected from the sublist in quicksort, as opposed to partitioning around the first element of
the sublist?

(A) It reduces the expected runtime over all of the inputs.

(B) It reduces the expected runtime for best-case inputs.

(C) It reduces the expected runtime for worst-case inputs.

(D) It reduces the worst-case runtime over all of the inputs.

3

8. (8 pt.) Dijkstra’s algorithm solves the single-source shortes path problem in weighted graphs with
non-negative edge-weights.

(a) (4 pt.) Consider a specific graph G1 = (V,E) in which w(e) = 1 for all edges e ∈ E. Circle all
of the following options that occur in the same order that Dijkstra’s marks vertices as “done”.

Assume deterministic tie-breaking i.e. Suppose all vertices are labeled with unique identifiers and
if multiple vertices share the same distance from s, then Dijkstra’s dequeues them in lexicographic
order. Likewise, BFS and DFS resolve ties between neighbors using this same lexicographic order.

(A) BFS marks vertices as “visited”.

(B) DFS marks vertices as “in progress”.

(C) DFS marks vertices as “done”.

(D) None of the above.

(b) (2 pt.) Consider a weighted directed graph G = (V,E) with non-negative edge-weights i.e.
wG(u, v) ≥ 0 for all edges (u, v) ∈ E. We construct a new graph G′ = (V,E′) from G such that
for all edges (u, v) ∈ E, we introduce two new vertices a′ and b′ where (u, a′), (a′, b′), (b′, v) ∈ E′

and
wG′(u, a′) = −1 wG′(a′, b′) = wG(u, v) wG′(b′, v) = 1

Which of the following is the largest set of graphs G for which Dijkstra’s algorithm works correctly
for all corresponding G′?

(A) All graphs with non-negative edge-weights.

(B) A non-empty strict subset of all graphs with non-negative edge-weights.

(C) No graphs with non-negative edge-weights.

(c) (2 pt.) Same question as part (b) except

wG′(u, a′) = 1 wG′(a′, b′) = wG(u, v) wG′(b′, v) = 1

(A) All graphs with non-negative edge-weights.

(B) A non-empty strict subset of all graphs with non-negative edge-weights.

(C) No graphs with non-negative edge-weights.

9. (4 pt.) In a parallel universe, our amazing CS 161 TAs decide they want to give homework hints to
ONE student instead of answering Piazza questions or holding office hours. They plan to pick this
student carefully, such that this student will tell their study group, and members of this study group
will tell other study groups until the ENTIRE class hears about the hint.

Suppose the TAs model this hint-flow network as a directed graph G = (V,E) where V is the set of
all CS 161 students and E contains a directed edge with weight 1 from student u to student v if and
only if u conveys homework hints to v.

From the perspective of the TAs, the students can be divided into equivalence classes, where Alice = Bob

if and only if the set of students that would eventually hear a hint told to Alice is identical to the set
of students that would eventually hear a hint told to Bob.

How can the TAs compute the decomposition of students into these equivalence classes?

(A) Compute the weakly connected components (WCC) of G with BFS and assign students in the
same WCC to the same equivalence class.

(B) Compute the strongly connected components (SCC) of G with Kosaraju’s algorithm and assign
students in the same SCC to the same equivalence class.

(C) Compute the global minimum cut of G with Karger’s algorithm and assign vertices in the same
super-vertex to the same equivalence class.

4

10. (4 pt.) Consider the following two algorithms for computing the nth Fibonacci number:

def fibo (int n):

if n < 2:

return 1

return fibo(n-1) + fibo(n-2)

cache = {}

def cached_fibo (int n):

if n < 2:

return 1

else if n is in cache:

return cache[n]

else:

result = cached_fibo(n-1) + cached_fibo(n-2)

cache[n] = result

return result

(a) (2 pt.) How many times is fibo(2) called on a single call to fibo(6)?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

(b) (2 pt.) How many times is cached_fibo(2) called on a single call to cached_fibo(6), assuming
an initially empty cache?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

11. (4 pt.) Given a connected, undirected graph G = (V,E) in which each edge e ∈ E has positive edge
weight w(e), suppose we want to compute a spanning tree T = (V,ET) such that the product of all
its edge weights is maximized i.e. the spanning tree T maximizing

∏
e∈ET

w(e).

Suppose we have a black box algorithm A that solves the MST problem. How can you use A to solve
this new problem, using only O(|E|) additional time (that is, not including the call to A)?

(A) Construct G′ from G such that wG′(e) = log(wG(e)) and run A on G′.

(B) Construct G′ from G such that wG′(e) = − log(wG(e)) and run A on G′.

(C) Construct G′ from G such that wG′(e) = 1/wG(e) and run A on G′.

(D) Run A on G.

5

12. (4 pt.) Over the last few years, you have kept a piggy bank of coins, waiting to cash them in for single
dollar bills. You notice you have pennies, nickels, dimes, quarters, and half-dollar coins in the jar.

As an over-achieving CS 161 student, you want to design a dynamic programming algorithm to count
the number of ways W that your coins add to 100 cents.

Assuming you have an unlimited number of each coin, what is the correct expression for the recur-
sive case of the the recurrence W (n,C), where C is a list containing the values of the coins (here,
[1, 5, 10, 25, 50]) and n is the total cost of the coins that you’re aiming to count?

(A) W (n,C) =


max{W (n− C[0], C),W (n,C)} if n > 0 and |C| > 0

1 if n = 0

0 if n < 0 or |C| = 0

(B) W (n,C) =


max{W (n− C[0], C),W (n,C[1 :])} if n > 0 and |C| > 0

1 if n = 0

0 if n < 0 or |C| = 0

(C) W (n,C) =


W (n− C[0], C) + W (n,C) if n > 0 and |C| > 0

1 if n = 0

0 if n < 0 or |C| = 0

(D) W (n,C) =


W (n− C[0], C) + W (n,C[1 :]) if n > 0 and |C| > 0

1 if n = 0

0 if n < 0 or |C| = 0

13. (4 pt.) Consider the following graph.

s

at

b
1

2
3

4

5

(a) (2 pt.) What is the value of the maximum s− t flow?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

(b) (2 pt.) What is the cost of the minimum s− t cut?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

6

14. (6 pt.) Recall the following definitions:

• P is a complexity class that represents the set of all decision problems that can be solved in
polynomial time.

• NP is a complexity class that represents the set of all decision problems for which the instances
where the answer is “yes” have proofs that can be verified in polynomial time.

• NP-complete is a complexity class that represents the set of all problems in x ∈ NP for which
it’s possible to reduce any other problem y ∈ NP to x.

• NP-hard is a complexity class that represents the set of problems that are at least as hard as
problems in NP-complete.

(a) (4 pt.) Circle all of the following problems that are in NP.

(A) Given a connected graph G, can its vertices be colored using two colors such that no edge
connects two vertices of the same color?

(B) Given an undirected graph G and a cost function on the vertices, find a minimum cost vertex
cover.

(C) Given a universe U of n elements, a collection of subsets S = {S1, . . . , Sk} of U each of which
has a cost, find a minimum cost subcollection of S that covers all elements of U .

(D) Given a list of elements A, is it sorted?

(E) Given a list of elements A, is 5 its kth-order statistic?

(b) (2 pt.) Which of the following algorithmic design paradigms did we employ to solve NP-hard
problems vertex cover and set cover?

(A) Divide-and-conquer.

(B) Randomized.

(C) Greedy.

(D) Dynamic programming.

7

Short-answers (30 pt.)

1. (6 pt.) What are the high-level similarities and differences between the divide-and-conquer, dynamic
programming, and greedy algorithmic paradigms?

[We are expecting: A similarity shared by all three algorithmic paradigms and a difference
between all three algorithmic paradigms.]

2. (6 pt.) Why does the Ω(n log(n))-time lower bound not contradict the existence of the O(n)-time
bucket sort?

[We are expecting: A 1-2 sentence answer to the question.]

8

3. (6 pt.) A friend suggests that you can use Dijkstra’s algorithm on graphs with negative edge weights
(provided there are no negative-weight cycles) by adding a constant value to all weights in the graph
to make them non-negative. Why doesn’t this work?

[We are expecting: A counterexample graph in which your friend’s approach will still
produce an incorrect path and 1-2 explanation of why it fails.]

4. (6 pt.) Breadth-first search, Dijkstra’s algorithm, the Bellman-Ford algorithm, and the Floyd-Warshall
algorithm can all be used to find shortest paths in a graph. Draw a line from each question to
the best answer to that question.

When might you prefer breadth-first
search to Dijkstra’s algorithm?

When might you prefer
Floyd-Warshall to Bellman-Ford?

When might you prefer Bellman-Ford
to Dijkstra’s algorithm?

When the graph has negative edge
weights.

When the graph is unweighted.

When you want to find the shortest
paths between all pairs of vertices.

When you want to find the shortest
paths from a specific vertex s to any

other vertex t.

9

5. (6 pt.) Consider a directed, weighted, graph G = {V,E}, and two special vertices, s, t ∈ V . Let f
be an s-t flow for the graph (i.e. the amount of flow that f sends on each edge is at most the weight
of the corresponding edge, and flow is conserved at every vertex other than s and t), and let the sets
S and T = V \ S partition the set of vertices, with s ∈ S and t ∈ T . What can you say about the
relationship between the value of the flow f , and the value of the cut S, T (where the value of the cut
is defined to be the sum of the weights of the edges that go from a node in S to a node in T)? What
can you say about the relationship between the value of the flow that maximizes the sum of the flows
leaving s, and the value of the cut Smin, Tmin that minimizes the value of the cut?

[We are expecting: Answers to both questions.]

10

Problems (50 pt.)

1. (Zig-Zags) (20 pt.)

A sequence of numbers is called a zig-zag sequence if the differences between successive numbers strictly
alternate between positive and negative. In other words, in order for a sequence [x1, x2, . . . , xn] to be an
zig-zag sequence, then its elements must satisfy one of the following relationships: x1 < x2 > x3 < x4 . . .
or x1 > x2 < x3 > x4

The function find_zig_zag_length(A) takes as input a list of positive integers A and returns the
length of the longest zig-zag subsequence.

The length of the longest zig-zag subsequence of [1, 10, 15, 5, 30, 25, 20] is 5, given by the
sublist [1, 10, 5, 30, 25].

(a) (8 pt.) Give the recursive formulation for find_zig_zag_length. If you can’t specify the recur-
sive formulation, we’ll award partial credit to English descriptions of the optimal substructure.
(Hint: Your table should be A.length× 2.)

[We are expecting: A recursive formulation or, for partial credit, an English descrip-
tion of the optimal substructure.]

11

(b) (8 pt.) Design a dynamic programming algorithm that computes the length of the longest
zig-zag subsequence.

[We are expecting: Pseudocode.]

(c) (4 pt.) Describe an approach for retrieving the list of indices describing the longest zig-zag
subsequence, given a dynamic programming algorithm that produces the length of the longest
zig-zag subsequence. (We discussed two approaches for accomplishing this task; either one will
do here.)

[We are expecting: One to two sentences with your approach.]

12

2. (Prioritizing) (30 pt.)

Suppose you have a to-do list of n tasks with their deadlines that must be performed individually (you
can’t multi-task).

(a) (6 pt.) Assume all tasks require one unit of time to complete and share the same importance.

i Task Deadline

0 Watch Game of Thrones 3
1 Mow the lawn 1
2 Adopt Koko the Koala 2.5
3 Feed baby breakfast 2

In this (hopefully) theoretical to-do list, you could accomplish tasks 0, 1, and 3 by their respective
deadlines by first doing task 1, then doing task 3, then doing task 0. Unfortunately, you cannot
always complete all n tasks, as in this case.

Design an O(n log(n))-time greedy algorithm for prioritize, which takes as input a list of
deadlines {d0, d1, . . . , dn−1} and returns the list of tasks that maximizes the number completed
before their deadlines.

[We are expecting: Pseudocode.]

13

(b) (8 pt.) Prove that your algorithm is correct—that is, prioritize returns a feasible (all returned
tasks can be performed individually by their deadlines) and optimal (there cannot be a longer
feasible list of tasks) solution.

(i) (2 pt.) Inductive hypothesis

(ii) (1 pt.) Base case

14

(iii) (4 pt.) Inductive step

(iv) (1 pt.) Conclusion

15

(c) (6 pt.) All tasks still require one unit of time to complete, but now assume tasks have different
values.

i Task Deadline Value

0 Watch Game of Thrones 3 1
1 Mow the lawn 1 1
2 Adopt Koko the Koala 2.5 1.5
3 Feed baby breakfast 2 1

In this to-do list, it is now optimal to complete tasks 0, 1, and 2 (we get to adopt Koko!). We
can complete task 1 by its deadline at t = 1 ≤ 1 = d1, then complete task 2 by its deadline at
t = 2 ≤ 2.5 = d2, then complete task 0 by its deadline at t = 3 ≤ 3 = d0.

Design an O(n2)-time greedy algorithm for weighted_prioritize, which takes as input a
list of deadlines {d0, d1, . . . , dn−1} and values {v0, v1, . . . , vn−1} and returns the list of tasks that
maximize the value of the tasks completed before their deadlines.

[We are expecting: Pseudocode.]

16

(d) (10 pt.) Now tasks might require different units of time to complete.

i Task Deadline Value Time Required

1 Watch Game of Thrones 3 1 2
2 Mow the lawn 1 1 1
3 Adopt Koko the Koala 2.5 1.5 1
4 Feed baby breakfast 2 1 0.5

In this to-do list, it is optimal to complete tasks 2, 3, and 4. We can complete task 2 by its
deadline at t = 1 ≤ 1 = d2, then complete task 4 before its deadline at t = 1.5 ≤ 2 = d4, then
complete task 3 by its deadline at t = 2.5 ≤ 2.5 = d3.

The function timed_prioritize and returns the list of tasks that maximize the value of the tasks
completed before their deadlines. The function timed_prioritize_value takes the same inputs
but returns the maximum value of tasks completed before their deadlines.

Design a dynamic programming algorithm that takes as input a list of deadlines, values, and
times {t1, t2, . . . , tn} and computes the value of the optimal list of tasks that maximizes the value
of the tasks completed before their deadlines.

[We are expecting: An English description or pseudocode of your algorithm.]

17

