
CS 161 Homework 4
Summer 2018 Due: Thursday 8/2 at 5 p.m. on Gradescope

Exercises

Exercises should be completed on your own.

Drawing graphs: You might try http://madebyevan.com/fsm/ which allows you to draw graphs with
your mouse and convert it into LATEX code:

C 1
S 6

1

1. (Fun with Dijkstra) (8 pt.)

Let G = (V,E) be a weighted directed graph. For the rest of this problem, assume that s, t ∈ V and
that there exists a directed path from s to t. The weights on G could be anything: negative,
zero, or positive.

For the rest of this problem, refer to the implementation of Dijkstra’s algorithm given by the pseudocode
below.

1 def dijkstra_st_path(G, s, t):

2 for all v in V: set d[v] = Infinity

3 for all v in V: set p[v] = None

4

5 # we will use p to reconstruct the shortest s-t path at the end

6 d[s] = 0

7 F = V

8 D = []

9 while F is not empty:

10 x = vertex v in F such that d[v] is minimized

11 for y in x.outgoing_neighbors:

12 d[y] = min(d[y], d[x] + weight(x,y))

13 if d[y] was changed in the previous line: set p[y] = x

14 F.remove(x)

15 D.add(x)

16

17 // use p to reconstruct the shortest s-t path

18 path = [t]

19 current = t

20 while current != s:

21 current = p[current]

22 add current to the front of the path

23 return path, d[t]

Notice that the pseudocode above differs from the pseudocode in the notes. The variable p maintains
the “parents” of the vertices in the shortest s-t path, so it can be reconstructed at the end.

1

(a) (1 pt.) Step through dijkstra st path(G, s, t) on the graph G shown below. Complete the
table below to show what the arrays d and p are at each step of the algorithm, and indicate what
path is returned and what its cost is.

s u

v

t

3

2
1

4G

[We are expecting the table below filled out, as well as the final shortest path and
its cost. No further justification is required.]

d[s] d[u] d[v] d[t] p[s] p[u] p[v] p[t]

When entering the first while loop for
the first time, the state is:

0 ∞ ∞ ∞ None None None None

Immediately after the first element of
D is added, the state is:

0 3 ∞ ∞ None s None None

Immediately after the second element
of D is added, the state is:

Immediately after the third element of
D is added, the state is:

Immediately after the fourth element of
D is added, the state is:

(b) (1 pt.) Prove or disprove: In every such graph G, the shortest path from s to t exists. Here,
a path from s to t is formally defined as a sequence of edges

(u0, u1), (u1, u2), (u2, u3), . . . , (uM−1, uM)

such that u0 = s, uM = t, and (ui, ui+1) ∈ E for all i = 0, . . . ,M − 1. A shortest path is a path
((u0, u1), . . . , (uM−1, uM)) such that

M−1∑
i=0

weight(ui, ui+1) ≤
M ′−1∑
i=0

weight(u′i, u
′
i+1)

for all paths ((u′0, u
′
1), . . . , (u′M ′−1, u

′
M ′)).

(c) (2 pt.) Prove or disprove: In every such graph G in which the shortest path from s to t exists,
dijkstra st path(G, s, t) returns a shortest path between s and t in G.

(d) (2 pt.) Prove or disprove: In every such graph G in which there is a negative-weight edge,
and for all s and t, dijkstra st path(G, s, t) does not return a shortest path between s and t in
G.

2

(e) (2 pt.) Your friend offers the following way to patch up Dijkstra’s algorithm to deal with negative
edge weights. Let G be a weighted graph, and let w∗ be the smallest weight that appears in G.
(Notice that w∗ may be negative). Consider a graph G′ = (V,E′) with the same vertices, and
such that E′ is as follows: for every edge e ∈ E with weight w, there is an edge e′ ∈ E′ with weight
w − w∗. Now all of the weights in G′ are non-negative, so we can apply Dijkstra’s algorithm to
that:

modified_dijkstra(G,s,t):

Construct G' from G as above.

return dijkstra_st_path(G',s,t)

Prove or disprove: Your friend’s approach will always correctly return a shortest path between
s and t if it exists.

3

Problems

You can collaborate with your classmates about the problems. However:

• Try the problems on your own before collaborating.

• Write up your solutions yourself, in your own words. You should never share your typed-up solutions
with your collaborators.

• If you collaborated, list the names of the students you collaborated with at the beginning of each
problem.

1. (Currency Exchange) (9 pt.)

(a) (3 pt.) Suppose the economies of the world use a set of currencies C1, . . . , Cn; think of these
as dollars, pounds, Bitcoin, etc. Your bank allows you to trade each currency Ci for any other
currency Cj , and finds some way to charge you for this service. Suppose that for each ordered
pair of currencies (Ci, Cj), the bank charges a flat fee of fij > 0 dollars to exchange Ci for Cj

(regardless of the quantity of currency being exchanged).

Devise an efficient algorithm which, given a starting currency Cs, a target currency Ct, and a
list of fees fij for all i, j ∈ {1, . . . , n}, computes the cheapest way (that is, incurring the least in
fees) to exchange all of our currency in Cs into currency Ct. Also, justify the correctness of your
algorithm and its runtime.

[We are expecting a description or pseudocode of your algorithm as well as a brief
justification of its correctness and runtime.]

(b) (3 pt.) Consider the more realistic setting where the bank does not charge flat fees, but instead
uses exchange rates. In particular, for each ordered pair (Ci, Cj), the bank lets you trade one
unit of Ci for rij > 0 units of Cj . Devise an efficient algorithm which, given starting currency Cs,
target currency Ct, and a list of rates rij , computes a sequence of exchanges that results in the
greatest amount of Ct. Justify the correctness of your algorithm and its runtime. [Hint: How can
you turn a product of terms into a sum? Take logarithms.]

(c) (3 pt.) Due to fluctuations in the markets, it is occasionally possible to find a sequence of
exchanges that lets you start with currency A, change into currencies, B, C, D, etc., and then
end up changing back to currency A in such a way that you end up with more money than you
started with—that is, there are currencies Ci1 , . . . , Cik such that

ri1i2 × ri2i3 × · · · × rik−1ik × riki1 > 1.

Devise an efficient algorithm that finds such an anomaly if one exists. Justify the correctness of
your algorithm and its runtime.

4

2. (Allocating Surfboards) (8 pt.)

A group of n friends have respective heights h1 < h2 < ... < hn (where hi is the height of friend i).
They decide to go surfing and need to rent surfboards. The surf shop has a rack with m > n surfboards
ordered by lengths s1 < s2 < ... < sm. In small/clean waves, the ideal surfboard has the same length
as your height. Help us figure out a good allocation of the boards.

Formally, an allocation of surfboards is a function f : {1, ..., n} → {1, ...,m} that maps each surfer
to a surfboard. More precisely, f(2) = 3 means that surfer 2 (with height h2) receives surfboard 3
(with length s3). An allocation f is optimal if it minimizes the quantity

∑n
k=1 |hk − sf(k)|. That is,

an allocation is optimal if it minimizes the sum of the discrepancies of height between the surfers and
their surfboards.

Let A[n,m] denote this minimal difference.

(a) (2 pt.) Let A[i, j] denote the sum of discrepancies of an optimal allocation of the first j surfboards
to the first i surfers (j ≥ i). Prove that, if surfboard j is used in an optimal allocation, then there
is an optimal allocation in which it is allocated to surfer i.

Note: There might be multiple optimal allocations. This part asks you to show that if the longest
board is used, then it might as well go to the tallest surfer.

[We are expecting: A formal proof of your answer]

(b) (2 pt.) Deduce a recurrence relation between A[i, j], A[i, j − 1] and A[i− 1, j − 1].

Hint: Consider two cases, according to whether surfboard j is used or not.

[We are expecting: A statement of the recurrence as well as a short explanation of
it.]

(c) (3 pt.) Design a dynamic programming algorithm that computes A[n,m] and also outputs the
optimal allocation.

[We are expecting: A description of a procedure or pseudocode of an algorithm.]

(d) (1 pt.) What is the runtime of your algorithm? Prove your answer.

[We are expecting: An informal analysis of the runtime.]

5

