Exercises

Exercises should be completed **on your own**.

Drawing graphs: You might try http://madebyevan.com/fsm/ which allows you to draw graphs with your mouse and convert it into LATEX code:

1. (Fun with Dijkstra) (8 pt.)

Let G = (V, E) be a weighted directed graph. For the rest of this problem, assume that $s, t \in V$ and that there exists a directed path from s to t. The weights on G could be anything: negative, zero, or positive.

For the rest of this problem, refer to the implementation of Dijkstra's algorithm given by the pseudocode below.

```
def dijkstra_st_path(G, s, t):
     for all v in V: set d[v] = Infinity
     for all v in V: set p[v] = None
      # we will use p to reconstruct the shortest s-t path at the end
     d[s] = 0
     F = V
     D = []
     while F is not empty:
       x = vertex v in F such that d[v] is minimized
       for y in x.outgoing_neighbors:
11
         d[y] = min(d[y], d[x] + weight(x,y))
          if d[y] was changed in the previous line: set p[y] = x
13
       F.remove(x)
       D.add(x)
15
16
     // use p to reconstruct the shortest s-t path
17
18
     path = [t]
     current = t
19
     while current != s:
20
        current = p[current]
^{21}
        add current to the front of the path
22
     return path, d[t]
```

Notice that the pseudocode above differs from the pseudocode in the notes. The variable p maintains the "parents" of the vertices in the shortest s-t path, so it can be reconstructed at the end.

(a) (1 pt.) Step through $dijkstra_st_path(G, s, t)$ on the graph G shown below. Complete the table below to show what the arrays d and p are at each step of the algorithm, and indicate what path is returned and what its cost is.

[We are expecting the table below filled out, as well as the final shortest path and its cost. No further justification is required.]

	$\mathtt{d}[s]$	$\mathtt{d}[u]$	$\mathtt{d}[v]$	$\mathtt{d}[t]$	p[s]	p[u]	p[v]	p[t]
When entering the first while loop for the first time, the state is:	0	∞	∞	∞	None	None	None	None
Immediately after the first element of D is added, the state is:	0	3	∞	∞	None	s	None	None
Immediately after the second element of D is added, the state is:								
Immediately after the third element of D is added, the state is:								
Immediately after the fourth element of D is added, the state is:								

(b) (1 pt.) Prove or disprove: In every such graph G, the shortest path from s to t exists. Here, a path from s to t is formally defined as a sequence of edges

$$(u_0, u_1), (u_1, u_2), (u_2, u_3), \dots, (u_{M-1}, u_M)$$

such that $u_0 = s$, $u_M = t$, and $(u_i, u_{i+1}) \in E$ for all i = 0, ..., M-1. A shortest path is a path $((u_0, u_1), ..., (u_{M-1}, u_M))$ such that

$$\sum_{i=0}^{M-1} \text{weight}(u_i, u_{i+1}) \le \sum_{i=0}^{M'-1} \text{weight}(u'_i, u'_{i+1})$$

for all paths $((u'_0, u'_1), \dots, (u'_{M'-1}, u'_{M'})).$

- (c) (2 pt.) Prove or disprove: In every such graph G in which the shortest path from s to t exists, dijkstra_st_path(G, s, t) returns a shortest path between s and t in G.
- (d) (2 pt.) Prove or disprove: In every such graph G in which there is a negative-weight edge, and for all s and t, dijkstra_st_path(G, s, t) does not return a shortest path between s and t in G.

2

(e) (2 pt.) Your friend offers the following way to patch up Dijkstra's algorithm to deal with negative edge weights. Let G be a weighted graph, and let w^* be the smallest weight that appears in G. (Notice that w^* may be negative). Consider a graph G' = (V, E') with the same vertices, and such that E' is as follows: for every edge $e \in E$ with weight w, there is an edge $e' \in E'$ with weight $w - w^*$. Now all of the weights in G' are non-negative, so we can apply Dijkstra's algorithm to that:

```
modified_dijkstra(G,s,t):
   Construct G' from G as above.
   return dijkstra_st_path(G',s,t)
```

Prove or disprove: Your friend's approach will always correctly return a shortest path between s and t if it exists.

Problems

You can collaborate with your classmates about the problems. However:

- Try the problems on your own before collaborating.
- Write up your solutions yourself, in your own words. You should never share your typed-up solutions with your collaborators.
- If you collaborated, list the names of the students you collaborated with at the beginning of each problem.

1. (Currency Exchange) (9 pt.)

(a) (3 pt.) Suppose the economies of the world use a set of currencies C_1, \ldots, C_n ; think of these as dollars, pounds, Bitcoin, etc. Your bank allows you to trade each currency C_i for any other currency C_j , and finds some way to charge you for this service. Suppose that for each ordered pair of currencies (C_i, C_j) , the bank charges a flat fee of $f_{ij} > 0$ dollars to exchange C_i for C_j (regardless of the quantity of currency being exchanged).

Devise an efficient algorithm which, given a starting currency C_s , a target currency C_t , and a list of fees f_{ij} for all $i, j \in \{1, ..., n\}$, computes the cheapest way (that is, incurring the least in fees) to exchange all of our currency in C_s into currency C_t . Also, justify the correctness of your algorithm and its runtime.

[We are expecting a description or pseudocode of your algorithm as well as a brief justification of its correctness and runtime.]

- (b) (3 pt.) Consider the more realistic setting where the bank does not charge flat fees, but instead uses exchange rates. In particular, for each ordered pair (C_i, C_j) , the bank lets you trade one unit of C_i for $r_{ij} > 0$ units of C_j . Devise an efficient algorithm which, given starting currency C_s , target currency C_t , and a list of rates r_{ij} , computes a sequence of exchanges that results in the greatest amount of C_t . Justify the correctness of your algorithm and its runtime. [Hint: How can you turn a product of terms into a sum? Take logarithms.]
- (c) (3 pt.) Due to fluctuations in the markets, it is occasionally possible to find a sequence of exchanges that lets you start with currency A, change into currencies, B, C, D, etc., and then end up changing back to currency A in such a way that you end up with more money than you started with—that is, there are currencies C_{i_1}, \ldots, C_{i_k} such that

$$r_{i_1 i_2} \times r_{i_2 i_3} \times \cdots \times r_{i_{k-1} i_k} \times r_{i_k i_1} > 1.$$

Devise an efficient algorithm that finds such an anomaly if one exists. Justify the correctness of your algorithm and its runtime.

2. (Allocating Surfboards) (8 pt.)

A group of n friends have respective heights $h_1 < h_2 < ... < h_n$ (where h_i is the height of friend i). They decide to go surfing and need to rent surfboards. The surf shop has a rack with m > n surfboards ordered by lengths $s_1 < s_2 < ... < s_m$. In small/clean waves, the ideal surfboard has the same length as your height. Help us figure out a good allocation of the boards.

Formally, an allocation of surfboards is a function $f:\{1,...,n\} \to \{1,...,m\}$ that maps each surfer to a surfboard. More precisely, f(2)=3 means that surfer 2 (with height h_2) receives surfboard 3 (with length s_3). An allocation f is optimal if it minimizes the quantity $\sum_{k=1}^{n} |h_k - s_{f(k)}|$. That is, an allocation is optimal if it minimizes the sum of the discrepancies of height between the surfers and their surfboards.

Let A[n, m] denote this minimal difference.

(a) (2 pt.) Let A[i, j] denote the sum of discrepancies of an optimal allocation of the first j surfboards to the first i surfers $(j \ge i)$. Prove that, if surfboard j is used in an optimal allocation, then there is an optimal allocation in which it is allocated to surfer i.

Note: There might be multiple optimal allocations. This part asks you to show that if the longest board is used, then it might as well go to the tallest surfer.

[We are expecting: A formal proof of your answer]

(b) (2 pt.) Deduce a recurrence relation between A[i, j], A[i, j - 1] and A[i - 1, j - 1].

Hint: Consider two cases, according to whether surfboard j is used or not.

[We are expecting: A statement of the recurrence as well as a short explanation of it.]

(c) (3 pt.) Design a dynamic programming algorithm that computes A[n, m] and also outputs the optimal allocation.

[We are expecting: A description of a procedure or pseudocode of an algorithm.]

(d) (1 pt.) What is the runtime of your algorithm? Prove your answer.

[We are expecting: An informal analysis of the runtime.]