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1 Hash tables

A hash table is a commonly used data structure to store an unordered set of items, allowing constant time
inserts, lookups and deletes (in expectation). Every item consists of a unique identifier called a key and a
piece of information. For example, the key might be a Social Security Number, a driver’s license number, or
an employee ID number. The way in which a hash table stores a item depends only on its key, so we will
only focus on the key here, but keep in mind that each key is usually associated with additional information
that is also stored in the hash table.

A hash table supports the following operations:

• Insert(k): Insert key k into the hash table.

• Lookup(k): Check if key k is present in the table.

• Delete(k): Delete the key k from the table.

Each operation will take constant time (in expectation).

1.1 Implementation

Let U be the universe of all keys. For example, U could be the set of all 64 bit strings. In this case |U | = 264.
This is a very large universe, but we do not need to store all of these 264 keys, we only need to store a subset
S ⊂ U . Suppose that we know that the size of the subset we will need to store is less than or equal to n,
which is much less than the size of the universe |U |. In a hash table of size n, each key k ∈ U is mapped to
one of n “buckets” by a hash function h : U → {1, 2, . . . , n}. Since the universe U is much larger than n,
multiple keys could map to the same hash bucket. To accommodate this, each bucket contains a linked list
of keys currently stored in that bucket.

Example

Suppose we have a hash table of size n = 5 with hash function h(x) = 13x + 2 mod 5. After inserting the
elements {1, 2, 4, 7, 8} the hash table looks like this:

B0 → 1

B1 → 8

B2 → NIL

B3 → 2 → 7

B4 → 4

Where arrows denote pointers in the linked lists, and B2 is empty. For example, 1 is placed into bucket
B0 because h(1) = 15 mod 5 = 0.
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Time complexity

With this setup, the time required to perform an Insert, Lookup or Delete operation on key k is linear
in the length of the linked list for the bucket that key k maps to. We just use the hash function to find the
correct bucket for a input key k, and then search the corresponding linked list for the element, inserting or
deleting if necessary. (Note that an Insert could be performed in constant time by always inserting at the
head of the list, but we first need to check if key k is already present).

Choice of size of hash table

The hash table size is usually chosen so that the size of the hash table is at least as large as the maximum
number of keys we will need to store at any point of time. (If this condition is violated and the number of
keys stored grows much larger than the size of the hash table, an implementation will usually increase the
size of the table, and recompute the new table from scratch by mapping all keys to the bigger table. Our
analyis ignores these complications and assumes that the number of keys is at most the hash table size.)

Potential problem with this implementation

In order for the operations to be implemented efficiently, we would like the keys to be distributed uniformly
amongst the buckets in the hash table. We might hope that all buckets have at most a constant number of
keys mapped to them, so that all operations could be performed in constant time. But for any fixed choice
hash function h, one can always produce a subset of keys S such that all keys in S are mapped to the same
location in the hash table. In this case, the running times of all operations will be linear in the number of
keys – far from the constant we were hoping for. Thus, for a fixed hash function h, it is impossible to give
worst case guarantees for the running times of hash table operations.

Possible solutions

There are two styles of analysis that we could use to circumvent this problem:

1. Assume that the set of keys stored in the hash table is random, or

2. Assume that the hash function h is random.

Both are plausible alternatives. The problem with the first alternative is that it is hard to justify that
the set of keys stored in the hash table is truly random. It would be more satisfying to have an analysis
that works for any subset of keys currently in the hash table. In these notes, we will explore the second
alternative, i.e., assume that the hash function h is random.

1.2 Hashing with a completely random hash function

What does it mean for h to be random? One possibility is that h is chosen uniformly and at random from
amongst the set of all hash functions h : U → {1, 2, . . . , n}. In fact picking such a hash function is not really
practical. Note that there are n|U | possible hash functions. Representing just one of these hash functions
requires log

(
n|U |

)
= |U | log n bits. In fact, this means we need to write down h(x) for every x ∈ U in order

to represent h. That’s a lot of storage space! Much more than the size of the set we are trying to store in
the hash table. One could optimize this somewhat by only recording h(x) for all keys x seen so far (and
generating h(x) randomly on the fly when a new x is encountered), but this is impractical too. How would
we check if a particular key x has already been encountered? Looks like we would need a hash table for that.
But wait, isn’t that what we set out to implement? Overall, it is clear that picking a completely random
hash function is completely impractical.

Despite this, we will analyze hashing assuming that we have a completely random hash function and
then explain how this assumption can be replaced by something that is practical.
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Expected cost of hash table operations with random hash function

What is the expected cost of performing any of the operations Insert, Lookup or Delete with a random
hash function? Suppose that the keys currently in the hash table are k1, . . . , kn. Consider an operation
involving key ki. The cost of the operation is linear in the size of the hash bucket that ki maps to. Let X
be the size of the hash bucket that ki maps to. X is a random variable and

E[X] =

n∑
j=1

Pr[h(xi) = h(xj)]

= 1 +
∑
j 6=i

Pr[h(xi) = h(xj)]

= 1 +
n− 1

n
≤ 2

Here the last step follows from the fact that Pr[h(xi) = h(xj)] = 1/n when h is random. Note that each key
appears in the hash table at most once.

Thus the expected cost of any hashing operation is a constant.

1.3 Universal hash functions

Can we retain the expected cost guarantee of the previous section with a much simpler (i.e. practical) family
of hash functions? In the analysis of the previous section, the only fact we used about random hash functions
was that Pr[h(xi) = h(xj)] = 1/n. Is it possible to construct a small, practical subset of hash functions with
this property?

Thinking along these lines, in 1978, Carter and Wegman introduced the notion of universal hashing:
Consider a family F of hash functions from U to {1, 2, . . . , n}. We say that F is universal if, for every
xi 6= xj , for a h chosen randomly from F , Pr[h(xi) = h(xj)] ≤ 1/n.

Clearly the analysis of the previous section shows that for any universal family, the constant expected
running time guarantee applies. The family of all hash functions is universal. Is there a simpler universal
family?

1.4 A universal family of hash functions

Suppose that the elements of the U are encoded as non-negative integers in the range {0, . . . , |U | − 1}. Pick
a prime p ≥ |U |. For a, b ∈ {0, . . . p− 1}, consider the family of hash functions

ha,b(x) = ax+ b mod p mod n

where a ∈ [1, p− 1] and b ∈ [0, p− 1].

Proposition 1. This family of hash functions F is universal.

In order to prove this statement, first, let’s count the number of hash functions in this family F . We
have p − 1 choices for a, and p choices for b, so |F | = p(p − 1). In order to prove that F is universal, we
need to show that for a h chosen randomly from F , Pr[h(xi) = h(xj)] ≤ 1/n. Since there are p(p− 1) hash
functions in F , this is equivalent to showing that the number of hash functions in F that map xi and xj to

the same output is less than or equal to p(p−1)
n . To show that this is true, first consider how ha,b behaves

without the mod n. Call these functions fa,b :

fa,b(x) = ax+ b mod p

The fa,b have the following useful property:
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Claim 1. For a given x1, x2, y1, y2 ∈ [0, p−1] such that x1 6= x2 there exists only one function fa,b such that

fa,b(x1) = y1 AND

fa,b(x2) = y2

Proof. Solve the above two equations for a and b:

ax1 + b ≡ y1 (mod p)

ax2 + b ≡ y2 (mod p)

By subtracting the two equations, we get:

a(x1 − x2) ≡ y1 − y2 (mod p)

Since p is prime and x1 6= x2, the above equation has only one solution for a ∈ [0, p− 1]. Then

b ≡ y1 − ax1 (mod p)

So we have found the unique a and b such that fa,b(x1) = y1 and fa,b(x2) = y2. �

In the above proof, note that a = 0 only when y1 = y2 = b. This is why we restrict a 6= 0, we don’t want
the hash function mapping all elements to the same value b.

Now, we have shown that for a given x1, x2, for each selection of y1, y2 with y1 6= y2, there is exactly one
function fa,b that maps x1 to y1 and x2 to y2. So, in order to find out how many functions ha,b map x1 and
x2 to the same value mod n, we just need to count the number of pairs (y1, y2) where y1 6= y2 and y1 ≡ y2
(mod n). There are p possible selections of y1 for this pair, and then ≤ (p− 1)/n of the possibilities for y2
will be equal to y1 mod n. (Convince yourself that this is true.) This gives a total of p(p−1)

n functions ha,b
that map x1 and x2 to the same element. So then

Pr[ha,b(x1) = ha,b(x2)] ≤ p(p− 1)/n

|F |

=
p(p− 1)

p(p− 1)(n)

=
1

n

which means the family F of the ha,b is universal, as desired. �
Wrapping up the discussion on hashing, if we pick a random hash function from this family, then the

expected cost of any hashing operation is constant. Note that picking a random hash function from the
family simply involves picking a, b – significantly simpler than picking a completely random hash function.

2 Balls and Bins

A useful abstraction in thinking about hashing with random hash functions is the following experiment:
Throw m balls randomly into n bins. (The connection to hashing should be clear: the balls represent the
keys and the bins represent the hash buckets.) The balls into bins experiment arises in several other problems
as well, e.g., analysis of load balancing. In the context of hashing, the following questions arise about the
balls and bins experiment:

• How large does m have to be so that with probability greater than 1/2, we have (at least) two balls
in the same bin? This tells us how large our hash table needs to be to avoid any collisions. We will
explore this at the end of these notes.

• Suppose m = n; what is the maximum number of balls that fall into a bin? This tells us the size of
the largest bucket in the hash table when the number of keys is equal to the number of buckets in the
table. We might explore this in the next homework.
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No collisions

The first question is related to the so called birthday paradox: Suppose you have 23 people in a room. Then
(somewhat surprisingly) the probability that there exists some pair with the same birthday is greater than
1/2! (This assumes that birthdays are independent and randomly distributed.) 23 seems like an awfully
small number to get a pair with the same birthday. There are 365 days in a year! How do we explain
this? Consider throwing m balls into n bins. The expected number of pairs that fall into the same bucket is
m(m − 1)/2n. (This follows from linearity of expectation. Note that the probability that a fixed pair falls
into the same bucket is 1/n.) Thus the probability that there is a collision is upper bounded by the expected
number of collisions which is m(m− 1)/2n. (Convince yourself that this is true.) On the other hand, we can
also show that the probability that all m balls fall into distinct bins is at most e−m(m−1)/2n:

Proof.

P [no collisions] =

m−1∏
i=1

(1− i

n
)

Now, we use the fact that (1− x) ≤ e−x:

(1− i

n
) ≤ e−i/n

So

P [no collisions] ≤
m−1∏
i=1

e−i/n

P [no collisions] ≤ e
∑m−1

i=1 −i/n

P [no collisions] ≤ e(−m(m−1)/(2n))

�

For m about
√

(2 ln 2)n ≈ 1.18
√
n this probability is less than 1/2, i.e. the probability of a collision is

greater than 1/2.
This is a useful design principle to keep in mind: If we want to design a hash table with no collisions,

then the size of the hash table should be larger than the square of the number of elements we need to store
in it. For our purposes in this note, insisting on no collisions means that the number of elements in the hash
table can only be a small fraction of the hash table size which is quite wasteful.

The birthday problem calculation is useful in other contexts. Here is an application: Suppose we assign
random b-bit IDs to m users. How large does b have to be to ensure that all users have distinct IDs with
probability 1 − δ. Here δ > 0 is a given error tolerance. Assigning b-bit IDs is identical to mapping to
n = 2b buckets. The birthday problem calculation shows us that the probability of a collision is at most
m2/2n = m2/2b+1. We should set b large enough such that this bound is at most δ. Thus b should be at
least 2 logm− 1 + log(1/δ).
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