
CS 161 Tutorial 2 Solutions
Summer 2018 7/6/18

Asymptotics

1. (Fun with asymptotics) In this exercise we used the definitions of Big-O, Big-Ω, and Big-Θ to prove
the following statements.

(a) We prove that log log(n) = O(log2(n)). Consider the values c = 1 and n0 = 2. Let x(n) = log(n),
which by definition of log is a positive and increasing function of n. For all x ≥ 1, we know that
log(x) ≤ x ≤ 1 · x2 = c · x2. Therefore, for all n ≥ 2, we know that log(log(n)) ≤ c · log2(n).

(b) We prove that n2 = Ω(6n
√
n+ 4n). Consider the values c = 1/20 and n0 = 2. For all n ≥ n0 = 2:

n2 ≥ (1/2)n2 = (1/20)(10n2)

≥ (1/20)(10n
√
n) = (1/20)(6n

√
n + 4n

√
n)

≥ (1/20)(6n
√
n + 4n) = c(̇6n

√
n + 4n)

Thus, there exists c = 1/20 and n0 = 2 for which n2 ≥ c(̇6n
√
n + 4n) for all n ≥ n0.

A general approach you can take to prove these types of bounds: simplify the given expression
into the product of c and a single term that’s a function of n, using the given expression as a
lower bound if you’re trying to prove Big-Ω or an upper bound if you’re trying to prove Big-O.
In this example, we notice that 6n

√
n + 4n ≤ 6n

√
n + 4n

√
n and the latter expression can be

combined into a single term 10n
√
n. Continue to simplify the expression to something trivial like

n2 ≥ (1/2)n2, then write your proof performing the algebra in the reverse order, as above.

(c) We prove that n2+5n
√
n is not Θ(n3). We hypothesize this might be the case because n2+5n

√
n

is not Ω(n3). Proving the latter statement proves the original statement by definition of Big-Θ. To
prove n2 +5n

√
n is not Ω(n3), we proceed by contradiction. Suppose there exists a c and n0 such

that for all n ≥ n0, n2 + 5n
√
n ≥ c ·n3. Now, consider n = max{6/c, n0}+ 1. By construction, we

have n ≥ n0 and n > 6/c. The latter expression implies that cn3 > 6n2 = n2 + 5n2 > n2 + 5n
√
n,

which contradicts our earlier assumption.

(d) We prove that log(n!) = Θ(n log(n)).

First, we prove that log(n!) = O(n log(n)). Notice that

log(n!) = log

(
n∏

i=1

i

)
=

n∑
i=1

log(i) ≤
n∑

i=1

log(n) = n log(n)

Thus, for c = 1 and n0 = 1, we have log(n!) ≤ n log(n) for all n ≥ n0 = 1.

Next, we prove that log(n!) = Ω(n log(n)). Notice that

log(n!) =

n∑
i=1

log(i) ≥
n∑

i=n/2

log(i) ≥
n∑

i=n/2

log(n/2) = (n/2) log(n/2)

Consider the values c = 1/4 and n0 = 4. Since (n/2) log(n/2) = (n/2) log(n) − (n/2) ≥ (1/4) ·
n log(n) = c · n log(n), we have log(n!) ≥ (1/4)n log(n) for all n ≥ n0 = 4.

Since log(n!) = O(n log(n)) and log(n!) = Ω(n log(n)), then log(n!) = Θ(n log(n)).

The result that log(n!) = Θ(n log(n)) might be helpful to prove Homework 1, Exercise 3(a).

1

2. (A hairy proof) In the step that applies log to both sides, it must be applied to the c as well;
otherwise, we’re no longer comparing the desired functions!

Consider the proof written with this operation applied correctly. First, we apply log to both sides of
n3 ≤ c · n2, which gives: 3 log(n) ≤ log(c) + 2 log(n). Again, consider the values c = 2 and n0 = 1. For
the chosen value of c, notice 3 log(n) ≥ log(2) + 2 log(n) for all n ≥ 2.

An exercise left to the reader: prove n3 is not O(n2).

3. (n-naught not needed?) Let

c′ = max

(
c,
T (1)

1d
,
T (2)

2d
, . . . ,

T (n0 − 1)

(n0 − 1)d

)
Then

T (n) ≤

{
T (n) n < n0

cnd n ≥ n0

≤

{
c′nd n < n0

c′nd n ≥ n0

≤ c′nd

Notice that the first inequality follows from the definition of Big-O and that T (n) = O(nd) (given
in the problem statement). The second inequality follows by construction of c′. The third inequality
summarizes what we wanted to prove.

This problem is challenging. It helps to consider the premise of the problem statement: you’ve been
taught that by definition of Big-O, T (n) = O(nd) iff there exists both c and n0 such that T (n) ≤ c·nd for
all n ≥ n0. To prove that n0 isn’t actually necessary, given arbitrary T (n) and nd where T (n) = O(nd),
you need to prove there exists some c′ such that T (n) ≤ c′nd for all n ≥ n0 = 1. Thus, the solution
constructs this c′ explicitly from values c and n0, which must exist due to the original definition of
Big-O.

4. Here’s the table.

linear search binary search

Lower-bound of best-case Ω(1) Ω(1)

Upper-bound of best-case O(1) O(1)

Lower-bound of worst-case Ω(n) Ω(log(n))

Upper-bound of worst-case O(n) O(log(n))

The main takeaway here: understand the difference between worst-case/best-case and lower-bound/upper-
bound. The worst-case/best-case describe a specific runtime (e.g. 6n log(n) or 3.25n2) which can then
be lower, upper, or tightly bounded.

2

Recurrences

1. (Fun with recurrences) In this exercise we solved the following recurrences.

(a) T (n) = O(nlog4 3), using the Master Theorem with a = 3, b = 4, d = 1/2. We have a > bd, so the
runtime is O(nlogb(a)).

(b) T (n) = O(n3), using the Master Theorem with a = 7, b = 2, d = 3. (Notice that the Θ(n3)
expression is O(n3) as well, as per the statement in class.) Then a < bd, so the runtime is
O(nd) = O(n3).

(c) To get intuition, we begin by iteratively plugging in the recurrence relation:

T (n) = 2T (
√
n) + 1

= 2(2T (n1/4) + 1) + 1

= 4T (n1/4) + 2 + 1

= 4(2T (n1/8) + 1) + 2 + 1

= 8T (n1/8) + 4 + 2 + 1

Carrying on this way, we see that for t ≥ log log(n),

T (n) = 2tT (n1/2t) +

t−1∑
i=0

2i.

(To formally prove this, we may do a proof by induction; this is not required for credit for
problems like this one if asked on a homework assignment or exam.) Now, for t = log log(n), we

have n1/2t = 2, and so plugging in t = log log(n) we see

T (n) = 2log log(n)T (2) +

log log(n)−1∑
i=0

2log log(n) = O(log(n)).

An exercise left to the reader: Prove this bound with substitution method.

3

Problems

1. (Selection sort)

(a) At the beginning of iteration i (the iteration where we try to select the element to occupy A[i]),
A[:i] contains the i smallest elements from the original list A, in sorted order.

(b) At the beginning of iteration j, min idx contains the index of the minimum element in the sublist
A[i:j].

(c) i. The loop invariant holds at the beginning of iteration i of the outer loop i.e. A[:i] contains
the i smallest elements from the original list A, in sorted order.

ii. The loop invariant holds before the algorithm starts when i=0 i.e. A[:0] contains 0 elements,
which are trivially the smallest elements in sorted order.

iii. Suppose the loop invariant holds at the beginning of iteration i. We prove it holds at the
beginning of iteration i + 1. If the inner loop invariant holds at the end of the inner loop,
then min idx contains the index of the smallest element in A[i:n]. Calling swap swaps this
smallest element into position A[i]. According to the inductive hypothesis, A[0] ≤ A[1]

≤ . . . ≤ A[i-1]; also, A[i] is at least as large as A[i-1] since A[:i] contained the i smallest
elements from the original list A. Therefore, after the swap, A[:i+1] contains the i + 1
smallest elements from the original list A, in sorted order, completing the induction.

iv. At the beginning of iteration n − 1 of the outer loop, A[:n-1] contains the n − 1 smallest
elements from the original list A, in sorted order. If A[:n-1] contains the n − 1 smallest
elements from the original list A, then A[n-1] must be at least as large as all elements in
A[:n-1]; therefore, A[:n] is sorted. Since A[:n] is the whole list A, selection sort is correct.

(d) i. The loop invariant holds at the beginning of iteration j of the inner loop i.e. min idx contains
the index of the minimum element in the sublist A[i:j]

ii. The loop invariant holds before the loop starts when j=i+1 i.e. min idx is set to i and
A[i:i+1] contains only one element, element i.

iii. Suppose the loop invariant holds at the beginning of iteration j. We prove it holds at the
beginning of iteration j + 1. According to the inductive hypothesis, min idx contains the
index of the minimum element in the sublist A[i:j]. If A[j] < A[min idx], then A[j] is the
minimum element in A[i:j+1], so setting min idx = j is correct. Otherwise, A[min idx]

is the minimum element in A[i:j+1], so leaving it alone is correct. This completes the
induction.

iv. At the beginning of iteration n of the inner loop, min idx contains the index of the minimum
element in the sublist A[i:n]. This is the condition required by the inductive step of outer
loop.

A few general tips for finding the loop invariant:

• First, determine the “protagonist” of the loop invariant by asking the following question: What
data changes as a function of i? In insertion sort, the so-called “protagonist” of the loop invariant
is the sublist A[:i]. Same goes for selection sort.

• Then consider: What conditions are true about the “protagonist” for each iteration? These
conditions form the initial candidate for your inductive hypothesis.

• Next be skeptical: Can you think of a counterexample where a partial solution satisfies this
hypothesis but doesn’t produce a correct answer? For example, if the initial candidate for your
inductive hypothesis for the outer loop of selection sort were: “A[:i] is sorted,” you could think
of the following partial solution that satisfies this hypothesis but will produce an incorrect answer:
[2, 3, 5, 1, 4] at the start of iteration i = 3.

4

• Refine your inductive hypothesis to handle this counterexample.

Once you decide on the loop invariant and inductive hypothesis, the rest of the proof gets reduced to
an exercise in plug-and-chug, so you should mostly practice identifying the loop invariant and inductive
hypothesis!

2. (Why not Select with groups of 3 or 7?)

(a) Let g = dn/3e represent the number of groups.

|A| ≤ n− 1− (2 · (dg/2e−2)+1)

= n + 2− 2 · dg/2e
≤ n + 2− 2g/2

= n + 2− dn/3e
≤ n + 2− n/3

= 2n/3 + 2

Note that the −2 comes from discarding the group with the median of medians and the leftover
group and the + 1 comes from including the one value in the same group as the median of medians.

(b) T (n) ≤ T (n/3) + T (2n/3 + 2) + Θ(n)

(c) No, it is not O(n).

We will imagine drawing a tree. At the top level of our tree, we have only one problem of size n,
and we do Θ(n) work. Then, at the next level, we do Θ(n/3) + Θ(2n/3) = Θ(n) work. In fact, if
we look at the two children of a particular node, we notice that the amount of work done within
each of those two children is exactly equal to the amount of work done in the parent! This is true
all the way down the tree, so we can see that there is Θ(n) work done at every level. Moreover,
since we either multiply the problem by 1/3 or by 2/3 each time, we can see that there are
Θ(log n) levels. (Depending what route you take through the tree, it could range from log3(n) + 1
at shortest to log3/2(n) + 1 at longest, but the difference between log3(x) and log3/2(x) is just a
multiplicative constant, which we ignore in the Big-Θ notation. (See Homework 1, Exercise 3b
for further convincing.) Then overall we can see that the runtime is Θ(n log n), so it is not O(n).

(d) Let g = dn/7e represent the number of groups.

|A| ≤ n− 1− (4 · (dg/2e−2)+3)

= n + 4− 4 · dg/2e
≤ n + 4− 4g/2

= n + 4− 2dn/7e
≤ n + 4− 2n/7

= 5n/7 + 4

Note that the −2 comes from discarding the group with the median of medians and the leftover
group and the +3 comes from including the three values in the same group as the median of
medians.

(e) T (n) ≤ T (n/7) + T (5n/7 + 4) + Θ(n)

(f) Yes, it is O(n). We proceed by substitution method.

• Inductive hypothesis T (k) = O(k) for all k ∈ {1, 2, . . . , n − 1} i.e for 1 ≤ k < n, we have
that T (k) ≤ max{7, 7d} · k.

• Base case T (k) ≤ max{7, 7d} · k for all k ≤ 100.

5

• Inductive step Since T (n) ≤ T (n/7) +T (5n/7 + 4) + Θ(n), there exists some d and n0 such
that T (n) ≤ T (n/7) + T (5n/7 + 4) + dn.

T (n) ≤ T (n/7) + T (5n/7 + 4) + dn

≤ max{7, 7d} · n/7 + max{7, 7d} · (5n/7 + 4) + dn

= max{7, 7d} · (6n/7 + 4) + dn

≤ max{7, 7d} · n

• Conclusion For all n > 1, T (n) ≤ max{7, 7d} · n. Therefore, T (n) = O(n).

6

