
CS 161 Tutorial 2: Algorithmic Analysis, Divide-and-Conquer
Summer 2018 7/5/18

Asymptotics

1. (Fun with asymptotics) Using the definitions of Big-O, Big-Ω, and Big-Θ, formally prove the
following statements.

[We are expecting: For each part, a rigorous (but short) proof, using the definitions of
Big-O, Big-Ω, and Big-Θ.]

(a) log log(n) = O(log2(n))

(b) n2 = Ω(6n
√
n + 4n)

(c) n2 + 5n
√
n is not Θ(n3)

(d) log(n!) = Θ(n log(n))

1



2. (A hairy proof) What’s wrong with this proof?

Here, we prove that n3 = O(n2). By definition of Big-O, T (n) = O(g(n)) iff there exists a c
and n0 such that 0 ≤ T (n) ≤ c · g(n) for all n ≥ n0.

First, we apply log to both sides of n3 ≤ O(n2), which gives: 3 log(n) ≤ O(2 log(n)). Consider
the values c = 2 and n0 = 1. For the chosen value of c, clearly 3 log(n) ≤ 2 ·2 log(n) = 4 log(n)
for all n ≥ 1. Since there exists a c and n0, we conclude that n3 = O(n2).

[We are expecting: A brief English description.]

3. (n-naught not needed?) Suppose that T (n) = O(nd), and that T (n) is never equal to ∞. Prove
rigorously that there exists a c such that 0 ≤ T (n) ≤ c · nd for all n ≥ 1. That is, the definition of
Big-O holds with n0 = 1.

[We are expecting: A rigorous proof using the definition of Big-O.]

2



4. (Worst-case and best-case vs. upper-bound and lower-bound) Recall that while we often care
most about the upper-bound of the worst-case runtime and the lower-bound of the best-case runtime,
it’s not required by definition that a worst-case runtime be expressed as Big-O or a best-case runtime be
expressed as Big-Ω. Consider the following implementations and fill in the tables with tight asymptotic
bounds.

[We are expecting: Fill in the table with asymptotic bounds using Big-O, Big-Ω, and
Big-Θ notation.]

(a) Here’s a standard implementation of linear search, which accepts a list A of distinct elements and
a value needle to search for and returns the index of the value in the list if it exists; otherwise it
raises an exception.

1 def linear_search(A, needle):

2 for idx in range(len(A)):

3 if A[idx] == needle:

4 return idx

5 raise Exception("needle does not exist!")

(b) Here’s a standard implementation of binary search, which accepts a sorted list A of distinct
elements and a value needle to search for and returns the index of the value in the list if it exists;
otherwise it raises an exception.

1 def binary_search(A, needle):

2 if len(A) == 0:

3 raise Exception("needle does not exist!")

4 mid = len(A) / 2

5 if A[mid] == needle:

6 return mid

7 elif A[mid] > needle:

8 # needle must be in the left half, if it exists

9 return binary_search(A[:mid], needle)

10 else:

11 # needle must be in the right half, if it exists

12 return mid + 1 + binary_search(A[mid+1:], needle)

linear search binary search

Lower-bound of best-case

Upper-bound of best-case

Lower-bound of worst-case

Upper-bound of worst-case

3



Recurrences

1. (Fun with recurrences) Solve the following recurrence relations; i.e. express each one as T (n) =
O(f(n)) for the tightest possible function f(n), and give a short justification. Be aware that some
parts might be slightly more involved than others. Unless otherwise stated, assume T (1) = 1.

[To see the level of detail expected, we have worked out the first one for you.]

(z) T (n) = 6T (n/6) + 1. We apply the Master Theorem with a = b = 6 and with d = 0. We have
a > bd, so the runtime is O(nlog6(6)) = O(n).

(a) T (n) = 3T (n/4) +
√
n

(b) T (n) = 7T (n/2) + Θ(n3)

(c) T (n) = 2T (
√
n) + 1, where T (2) = 1

4



Problems

1. (Selection sort) Here is a Python implementation of selection sort, an iterative comparison-based
sorting algorithm similar to insertion sort. Instead of inserting arbitrary elements into its growing
sorted list, however, selection sort specifically “selects” the next largest unsorted element and appends
it to the end of its growing sorted list.

1 def selection_sort(A):

2 for i in range(len(A)-1):

3 min_idx = i

4 for j in range(i+1, len(A)):

5 if A[j] < A[min_idx]:

6 min_idx = j

7 # Swaps elements occupying min_idx and i in place

8 swap(min_idx, i)

(a) The proof of correctness for selection sort, similar to the one for insertion sort, involves two loop
invariants. What is the loop invariant associated with the outer for loop?

[We are expecting: A brief English description.]

(b) What is the loop invariant associated with the inner for loop?

[We are expecting: A brief English description.]

(c) Now let’s put it all together. Fill in the following information for the outer for loop.

[We are expecting: Brief English descriptions.]

i. Inductive Hypothesis

5



ii. Base case (initialization)

iii. Inductive step (maintenance)

iv. Conclusion (termination)

(d) Fill in the following information for the inner for loop.

[We are expecting: Brief English descriptions.]

i. Inductive Hypothesis

ii. Base case (initialization)

iii. Inductive step (maintenance)

6



iv. Conclusion (termination)

2. (Why not Select with groups of 3 or 7?) In the select algorithm from class, in order to find
a pivot, we divided our list of length n into m = dn/5e groups of at most length 5. Why 5? In this
question, we explore this decision.

Here is a Python implementation of select.

1 def select(A, k, group_length=5, c=100):

2 if len(A) <= c:

3 return naive_select(A, k)

4 pivot = median_of_medians(A, group_length)

5 left, right = partition_about_pivot(A, pivot)

6 if len(left) == k:

7 # The pivot is the kth smallest element!

8 return pivot

9 elif len(left) > k:

10 # The kth smallest element is left of the pivot

11 return select(left, k, group_length, c)

12 else:

13 # The kth smallest element is right of the pivot

14 return select(right, k-len(left)-1, group_length, c)

15

16 def select_3(A, k):

17 select(A, k, group_length=3)

18

19 def select_7(A, k):

20 select(A, k, group_length=7)

(a) Prove that the recursive call inside of select 3 gets passed a list of length at most 2n/3 + 2.
Include the values within the same group as the median of medians as elements that are guaranteed
to be greater or less than it.

[We are expecting: A convincing algebraic proof.]

7



(b) Write a recurrence relation for select 3.

[We are expecting: A recurrence relation.]

(c) Is select 3 O(n)? Justify your answer.

[We are expecting: A convincing argument, such as analyzing a tree, unraveling the
recurrence relation to get yield a summation, or attempting substitution method.]

8



(d) Prove that the recursive call inside of select 7 gets passed a list of length at most 5n/7 + 4.
Make the same assumptions as part (a).

[We are expecting: A convincing algebraic proof.]

(e) Write a recurrence relation for select 7.

[We are expecting: A recurrence relation.]

(f) Is select 7 O(n)? Justify your answer.

[We are expecting: A convincing argument, such as analyzing a tree, unraveling the
recurrence relation to get yield a summation, or attempting substitution method.]

9


