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Linear-Time Sorting

1. (a)
(b)
(c)
(d)
2. (a)

(b)

[byte, pits, bits, pins]
[pins, byte, pits, bits]
[pins, pits, bits, byte]
[bits, byte, pins, pits]

To output the sorted array, we need to know how many occurrences there are of each value
1,2,...,k. So for each of these we do a binary search on the number of occurrences: for example,
we ask “Are there n/2 or more 1’s in the array?” and so on until we determine the number of
occurrences for each of 1,2,..., k. Each binary search takes O(log(n)) time and we do k searches,
so in total this takes O(klog(n)) time.

The pseudocode is as follows:

def binary_search(value, low, high):
if low >= high:
return low
mid = (low + high) / 2
answer = ask("Are there more than “mid' occurences of “value' in the array?")
if answer is "yes":
return binary_search(value, mid + 1, high)
else:
return binary_search(value, low, mid)

def main():
counts = []
for i = 1 to k:
counts.append(binary_search(i, 0, n))
for i, count in enumerate(counts):
for j = 1 to count:
print i

The above assumes knowledge of n and k. If you did not know what these values were, you could
also do a binary search for them. For example, you could ask “Is n < ¢?” for ¢ = 2,22,23,.. .. If
the answer is first “YES” for ¢ = 2°, then we binary search for n between 2°~! and 2°. This will
take in total O(logn) time: O(logn) to find the range we need to binary search, and O(logn) to
do the binary search. This same procedure can be used to find k.

An algorithm that asks at most ¢ questions can have at most 2¢ outputs because each sequence
of answers can correspond to only one output. For any series of ¢ yes/no questions, there are 2¢
sequences of possible answers. So if there are N distinct sorted arrays (for given values of n and
k) then any algorithm must ask at least log N questions in the worst case.

A lower bound on N, the number of distinct sorted arrays of length n containing the elements
{1,...,k}, is given as follows: for each value 1,...,k—1 let it occur anywhere between 1 and n/k
times. Let the value k occur the number of times that will fill out the array to n numbers. This



. |
results in (%) ! distinct sorted arrays. Thus we have a lower-bound on the worst-case number

of questions: log (%)k_1 = (k—1)log » = Q(klog 2).

Alternative way to count N (“stars and bars” approach): the number of distinct sorted ar-

rays is given by the number of ways to distribute n balls into k boxes, which is ("F*17)

("+k_1)(@”_'“1;!2)”'("“) > Z,’::i = (%)k_l. This simplification follows from the fact that (n + k —

Dn+k—2)---(n+1)>n*1and (k—1)! < kF1L

A thought process you could have used to arrive at this algorithm asks why is it sufficient for
this problem to lower-bound the number of ordered arrays, instead of counting exactly? Once
you have understood this, use a counting argument: how can you lower-bound the number of
ordered arrays are there that consist of n integers {1,...,k} (not necessarily distinct)? There are
a number of ways to do this; we suggest you do NOT use Stirling’s approximation: you don’t
need this in order to prove the result, and it will be complicated.




Randomized Algorithms

1.

(a)

Let X be a random variable that represents the runtime of the randomized algorithm. The
problem statement tells us E[X] = 1. Then:

Pr[X >10] = Pr[X > 10E[X]] < 1/10

We assume successive executions of BigProblem1() are independent. Let X be the random
variable representing the runtime of BigProblem1(). Again, E[X] = 1. Then:

Prno output after 10 seconds] = Pr[X > 8|Pr[X > 2]
Pr[X > 8E[X]|Pr[X > 2E[X]]
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In English, our algorithm does the following:

For each pair of points (x;,y;) and (x;,y;), compute the slope and intercept of the pair.

Sort the pairs by according to (m,b).
e Find the longest consecutive sequence of identical (m,b) in the sorted list of pairs.
e Return the list of points in this longest consecutive sequence.
There are O(n?) pairs of points. For each pair of points (z;,y;) and (x;,y;), we can compute

the slope and intercept of the pair in O(1)-time. Since we can compare each (m,b) in O(1)-time,
sorting the n? pairs of (m,b) requires O(n?logn?) = O(n? logn)-time.

In English, our algorithm does the following;:

e Sample two points uniformly at random and compute (m,b).
e For all other points, count how many satisfy y = mx 4+ b and maintain a set of these points.
e If the total number of points on this line is n/k, return this set of points.

Modeling the expected value of ¢ trials until a single success of both points being chosen from
the correct maximum cardinality set is equivalent to modeling a geometric distribution. The
probability of choosing two points in the set is %/n - %/n = 5. Thus, the expected value of t,
by the geometric distribution, is k2. Additionally, for each trial, the algorithm loops through all
other n — 2 points in A, and performs constant work (calculating a slope) on each point. Thus,
the expected runtime of this algorithm is O(k? - n), or O(n).

O(00). The algorithm is not guaranteed to terminate, since it does not guarantee picking a pair
of points in the maximum cardinality set



Hash Functions

2.

(a) Style note: Here are a few acceptable ways of writing the proof.

Soln. 1

Soln. 2

We can decompose the probability into the sum of conditional probabilities based on the
value of h(z;); that is, Pr[h(z;) = h(z;)] = Y p_; Prlh(z;) = k] - Pr[h(z;) = h(z;)|h(x;) = k).
But what is Pr{h(z;) = h(z;)|h(z;) = k] exactly? It is in fact just Pr[h(xz;) = k], since
once we know that h(z;) = k, the only way for h(z;) to equal h(z;) is if h(z;) = k. Then
Prlh(es) = h(w;)] = Sy Prlh(es) = K] - Prlh(z;) = K]
Now, because H consists of every possible function from U to {1, ...,n}, we know that there are
equally many functions mapping x; to every possible value in {1,...,n}. Then Pr[h(z;) = k]
is exactly 1/n, and similarly for Pr[h(z;) = k]. This tells us that Pr[h(z;) = h(y)] =
Sher =2 = 1 since we are summing (1) up n times. This proves that indeed the
probability of collision is indeed exactly 1/n, as desired.
The number of hash functions such that h(z;) = h(z;) = k is n™~2 for each k = 1,...,n,
because there are M — 2 remaining elements of I/ that can be assigned. So the total number
of hash functions such that h(z;) = h(z;) is exactly n™ ~!. Thus the probability that h(z;) =
h(z;) is exactly

aM-1  pM-1

H M

1
n

, as desired.

(b) One way to see that this is the case is to notice that, by removing h; from the set of possible
functions, we are making sure that every pair of elements is strictly less likely to collide; that
is, in part (a), the probability we got was based on the existence of this function in the set, and
removing the function must make the probability of collision strictly lower.

We can prove this more formally. Fix z;,z; € Y. We will count the number of h € H that have
h(xi) = h(z;).
First, observe that for all k € {2,...,n}, the number of h such that h(x;) = h(z;) = k is exactly

M

n
/H/
On

~2; that is, for each of the remaining M — 2 items of U, we have n choices each. The fact that
is missing h; does not affect this computation, since h(z;) = k # 1, so h # hy in this case.
the other hand, for k& = 1, the number of h such that h(z;) = h(z;) = 1 is exactly n™ =2 — 1.

The reasoning is exactly the same as before, except we throw h; out of the count.



Then, the probability

number of h € H' so that h(z;) = h(x;)

Prh(z;) = h(z;) =

|H|
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