
CS 161 Tutorial 4: Tree Algorithms
Summer 2018 Graph Algorithms
7/19/18

Tree Algorithms

1. (Fun with red-black trees) (Difficulty: Easy)

Recall the five rules for red-black trees:

• Every vertex is colored red or black.

• The root vertex is a black vertex.

• A NIL child is a black vertex.

• The child of a red vertex must be a black vertex.

• For all vertices v, all paths from v to its NIL descendants have the same number of black vertices.

Consider the following binary search trees. Which of the following vertices must be black in any valid
red-black coloring?

(a) (b)

1

2. (Randomly built BST’s) (Difficulty: Hard)

Here, we prove that the average depth of a vertex in a randomly built binary search tree with n vertices
is O(log(n)). A randomly built binary search tree with n vertices is one that arises from inserting
the n keys in random order into an initially empty tree, where each of the n! permutations of the input
keys is equally likely.

Let d(x, T) be the depth of vertex x in a binary tree T (the depth of the root is 0). Then, the average
depth of a vertex in a binary tree T with n vertices is

1

n

∑
x∈T

d(x, T)

.

(a) Let the total path length P (T) of a binary tree T be defined as the sum of the depths of all
vertices in T , so the average depth of a vertex in T with n vertices is equal to 1

nP (T). Show that
P (T) = P (TL)+P (TR)+n−1, where TL and TR are the left and right subtrees of T , respectively.

[We are expecting: A rigorous mathematical proof.]

2

(b) Let P (n) be the expected total path length of a randomly built binary search tree with n vertices.
Show that

P (n) =
1

n

n−1∑
i=0

(P (i) + P (n− i− 1) + n− 1)

.

[We are expecting: A rigorous mathematical proof.]

(c) Show that P (n) = O(n log(n)). Hint: You might want to revisit quicksort.

[We are expecting: A short English justification.]

(d) Design a sorting algorithm based on randomly building a binary search tree. Show that its
expected runtime is O(n log(n)). Assume that a random permutation of n keys can be generated
in O(n)-time.

[We are expecting: An English description of the algorithm and a brief justification
for its runtime.]

3

Graph Algorithms

1. (Fun with graphs) (Difficulty: Easy)

For each of the following graphs, assuming a vertex’s neighbors will be visited in alphabetical order,
what will be the ordering of end times from lowest to highest for dfs and order of visited times for
bfs, starting from A.

(a)

A B

C D E
(b)

A B

C D E

2. (DFS) (Difficulty: Easy)

Implement dfs without using recursion, still with runtime O(|V |+ |E|).
[We are expecting: An pseudocode of the algorithm and a brief justification for its run-
time.]

4

3. (Robotic reduction) (Difficulty: Medium)

Consider a robot that can take steps of k distinct lengths s1, s2, . . . , sk ∈ Z in feet. The robot starts at
position p0 on a circular track with circumference length T ∈ N in feet and it starts walking counter-
clockwise around the track to calibrate itself. It takes one step for each of the lengths s1, s2, . . . , sk,
bringing it to position p1.

Describe an O(T + kT)-time algorithm that finds the fewest number of steps that the robot needs to
take to get back to position p0, assuming the robot can’t turn around (all steps must be taken in the
counter-clockwise direction).

[We are expecting: An English description of the algorithm and a brief justification for
its runtime.]

5

4. (2SAT-SCC) (Difficulty: Hard)

In 2SAT, you have a set of boolean clauses, each containing two variables. Your goal is to set all of
these clauses to true, or report that doing so is not possible. For example,

(x1 ∨ x2) ∧ (x̄1 ∨ x3) ∧ (x̄2 ∨ x̄3)

can be satisfied by setting x1 and x3 to true and x2 to false.

(a) First, it helps to decompose clauses into their implications i.e. a clause represented by a∨ b would
be represented by ā→ b and b̄→ a. What are the implications in the clauses above?

[We are expecting: A list of implications.]

(b) To solve this problem with a graph algorithm, first built a graph by creating two vertices for each
variable x: x and x̄. Then, add directed edges based in the implications from each clause. What
is the graphical representation of the above boolean clauses?

[We are expecting: A directed graph.]

(c) What do SCC’s in these 2SAT graphs represent? What if x and x̄ were part of the same SCC?

[We are expecting: Answers to the questions.]

6

(d) Assume we have a sink SCC C from the graph, and that no variable and its negation both appear
inside of C. If C has vertices of the form a, b, . . . , z, what corresponding component do we know
must exist in the graph? Is there an edge between these two components?

[We are expecting: Answers to the questions.]

(e) Given this graph and the properties above, develop an algorithm to solve 2SAT.

[We are expecting: An English description of the algorithm.]

7

