Advanced Algorithms

1. (a) T
 (b) F
 (c) T
 (d) It’s only fixed-parameter tractable. As we increase the size of W (number of bits required to represent it), the runtime doubles. Thus, our algorithm is actually exponential with respect to the input.
 (e) When analyzing algorithms with multiple input parameters, we want to describe the efficiency of the algorithm with respect to a subset of the overall parameters (often a single one). An example in which this type of analysis was useful was for 0/1 Knapsack.
 (f) A decision version of the SSSP optimization problem might be “Does there exist a shortest path from s to t of at most cost c?” We can use a solver for this polynomial-time decision problem by simply doing a open-ended binary search for the correct value c.

Final Review

1. (a) In words, our algorithm does the following:
 - Pick an arbitrary vertex $v \in V$.
 - Run BFS in G from v and check that all of V is reachable from v; if not, return “no.”
 - Construct the reverse graph $G' = (V, E')$ where $E' = \{(v, u) : (u, v) \in E\}$.
 - Run BFS in G' from v and check that all of V is reachable from v; if not, return “no” and otherwise, return “yes.”
 (b) For each edge $e \in E$ run the algorithm of part (a) on $G - \{e\}$ the graph obtained by removing e. Return “no” if any of these returns “no”; otherwise return “yes.”
 (c) The minimum number of pipes/edges is $2n$.
 - It is necessary that for every vertex $v \in V$ to have in-degree of at least 2—that is, at least 2 edges pointing towards it. If not, then if we removed the sole edge $(u, v) \in E$ from G, then v cannot reach any other vertices. The same argument shows that we require an out-degree of at least to 2. If this is the case, then the number of edges is
 \[|E| = \frac{1}{2} \sum_{v \in V} \text{deg}(v) \geq \frac{1}{2} \sum_{v \in V} 4 \geq 2n \]
 where $1/2$ comes from the fact that each edge contributes to the degree of two vertices.
 - The condition above is also sufficient. To see this, number the vertices v_1, \ldots, v_n and consider the “double-cycle” graph containing all edges (v_i, v_{i+1}) and (v_{i+1}, v_i). This graph remains strongly connected if any single edge is removed, and it has exactly $2n$ edges.
2. (a) \((C, F), (E, F), (D, E), (D, A), (A, B)\)
(b) \((A, D), (A, B), (D, E), (C, F), (E, F)\)

3. (a) Consider the different components of the recursive relationship

\[D[i] = \max(\{D[k] + 1 : 0 \leq k < i, A[k] < A[i]\} \cup \{1\}) \]

- The \(\max\) operator indicates we’re setting \(D[i]\) to the maximum of a set of numbers.
- The \(D[k] + 1 : 0 \leq k < i\) means that we add 1 to values in the table to the left of the \(i\) and include this value as part of the set if appending element \(i\) to the end of a subsequence ending at element \(k\) satisfies the constraint \(A[k] < A[i]\) i.e. the sequence will still be increasing.
- The 1 accounts for the situation in which the previous set is empty, which could happen if element \(i\) happens to be smaller than all elements to the left of it. In this case, there still exists a trivial increasing subsequence ending at element \(i\), namely the subsequence with element \(i\) itself.

(b) Our pseudocode works as follows:

```python
def lis(A):
    D = [0 for _ in range(len(A))]
    for i in range(len(A)):
        maxSoFar = 1
        for k in range(i):
            if A[k] < A[i] and D[k] + 1 > maxSoFar:
                maxSoFar = D[k] + 1
        D[i] = maxSoFar
    return max(D)
```

This algorithm runs in \(O(n^2)\)-time since it iterates over all \(n\) elements of \(A\) and, for each element \(i\), iterates over \(i\) elements to left in \(D\) to determine the maximum so far.

(c) In addition to maintaining the lengths in the table, we can maintain the subsequences themselves. In addition to adding 1 to \(D[k]\) to produce the maximum such \(D[i]\), we appending \(i\) to that maximum prior set chosen.

4. (a) We proceed by induction on the non-negative integer \(n\).

- **Inductive Hypothesis:** \(\text{minimumElements}(i, S)\) returns the correct solution for \(0 \leq i\).
- **Base Case:** We prove the inductive hypothesis for \(i = 0\). Notice that 0 elements from \(S\) are required to write 0 as the sum of the elements, and the algorithm correctly returns 0. For all other \(i < \min S\), it’s impossible to write \(i\) as the sum of elements from \(S\) since \(i < s_j < s_j + \sum_{s \in S} s\) for all \(j\) and non-empty subsets of \(S\) given by \(\hat{S}\). Thus, the algorithm correctly returns None in these cases.
- **Inductive Step:** Suppose that \(\text{minimumElements}(i, S)\) returns the correct solution for all \(0 \leq i < k\), where \(k > \min S\). Here, we prove that it returns the correct solution for \(k\).
 The algorithm retrieves the minimum number of elements needed to write \(i = k - s\) for all \(s \in S\). We know the algorithm returns the correct solutions to these problems by the inductive hypothesis. For each \(s\), it’s possible to write \(k\) as the sum of the same set of numbers from \(S\) needed to write \(i\), and then including one more \(s\). Thus, the minimum number of elements needed to write \(k\) is just the minimum value of all possible \(i = k - s\), plus 1. Together, this proves the algorithm returns the correct solution for \(k\).
- **Conclusion:** The algorithm returns the correct solution for all \(i\), including \(i = n\), the number it was original called on. Therefore, \(\text{minimumElements}(n, S)\) returns the correct solution.
(b) We show that the runtime of the algorithm takes the form $2^{O(n)}$ for $S = \{1, 2\}$.
Consider the recurrence relation for the algorithm for this particular S:

$$T(n) = \begin{cases}
O(1) & \text{if } n = 0 \text{ or } n < \min S \\
T(n-1) + T(n-2) + O(|S|) & \text{otherwise}
\end{cases}$$

Since $T(n) = T(n-1) + T(n-2) + O(|S|) \geq 2T(n-2) + O(1)$ (note this is being a bit sloppy with Big-O, but not the point of this problem), and expression on the right-hand side produces a recursion tree with $(n - \min S)/2 + 1$ levels and $2^{(n-\min S)/2+1} - 1$ total nodes. Since $\min S$ is a constant with respect to n, then $T(n) = T(n-1) + T(n-2) \geq 2^{O(n)}$, as required.

(c) In words, we just add a cache to keep track of solutions already solved.

```python
# Use an array instead of a dict for O(1)-time worst-case search
cache = [-1 for _ in range(n)]
def minimumElements(n, S):
    if n == 0:
        return 0
    if n < min(S):
        return None
    if cache[n] != -1:
        return cache[n]
    candidates = []
    for s in S:
        candidate = minimumElements(n-s, S)
        if candidate is not None:
            candidates.append(candidate + 1)
    if len(candidates) == 0:
        minCandidate = None
    else:
        minCandidate = min(candidates)
    cache[n] = minCandidate
    return minCandidate
```

This algorithm recursively solves for the minimum candidate at most once for all $0 \leq i < n$ and just indexes into the cache in worst-case $O(1)$-time otherwise. Each of the n times the algorithm actually solves for the minimum candidate, it iterates over a list of length $|S|$. Therefore, the algorithm runs in worst-case $O(n|S|)$-time.

(d) In words, we fill out a table associated with the solutions for $i = \{0, \ldots, n\}$.

```python
table = [-1 for _ in range(n+1)]
def minimumElements(n, S):
    table[0] = 0
    for i in range(1, min(S)):
        table[i] = None
    for k in range(min(S), n+1):
        for s in S:
            candidate = table[k-s]
            if candidate is not None:
                candidates.append(candidate + 1)
        if len(candidates) == 0:
            minCandidate = None
        else:
            minCandidate = min(candidates)
        table[k] = minCandidate
```

This algorithm recursively solves for the minimum candidate at most once for all $0 \leq i < n$ and just indexes into the cache in worst-case $O(1)$-time otherwise. Each of the n times the algorithm actually solves for the minimum candidate, it iterates over a list of length $|S|$. Therefore, the algorithm runs in worst-case $O(n|S|)$-time.
table[k] = minCandidate
return table[-1]

5. (a) Your friend is incorrect. Consider $n = 30$. The greedy algorithm would find the solution
$$\{1,1,1,1,1,25\}$$
but the optimal solution is
$$\{10,10,10\}$$.

(b) Your friend is correct.
First, we prove a lemma: For all s, any list comprised of the elements
$$\{1,2,4,8,\ldots,2^s\}$$
that sums to at least 2^s (each element might appear in the list multiple times) must contain a sublist of
elements that sums to exactly 2^s.

To prove the statement, we proceed by induction.

- **Inductive Hypothesis:** A list comprised of the elements
$$\{1,2,4,8,\ldots,2^s\}$$
that sums to at least 2^s must contain a sublist of elements that sums to exactly 2^s.

- **Base Case:** The statement holds for $s = 0$: for any list comprised of just 1’s that sums to at least 1, the list contains a subset of elements (namely, any one of the elements!) that sums to exactly 1.

- **Inductive Step:** Suppose the inductive hypothesis holds for s; we prove it holds for $s + 1$. Consider a list comprised of the elements
$$\{1,2,4,8,\ldots,2^s,2^{s+1}\}$$
that sums to at least 2^{s+1}.
Let $x \geq 2^{s+1}$ be this sum. Consider two cases on this list:

1. It contains at least one occurrence of the element 2^{s+1}. There exists a trivial sublist of elements containing this single element that sums to exactly 2^{s+1}, completing the induction.

2. It does not contain any occurrences of the element 2^{s+1}, and entirely contains elements from
$$\{1,2,4,8,\ldots,2^s\}$$.
By the inductive hypothesis, since $x \geq 2^{s+1} > 2^s$, there exists a sublist of elements that sums to exactly 2^s. Excluding these elements, the remaining elements sum to $x - 2^s \geq 2^{s+1} - 2^s \geq 2^s$. Therefore, by the inductive hypothesis, there exists another sublist (disjoint from the first) that sums to exactly 2^s. Since there are two sublists that sum to exactly 2^s, there must be a sublist that sums to exactly 2^{s+1}, namely the concatenation of these two sublists, completing the induction.

- **Conclusion:** Since the inductive hypothesis holds for $s = 0$ (base case), and it holds for $s + 1$ if it holds for s (inductive step), it holds for all s, as required.

Using the lemma, we can prove that the greedy algorithm is always feasible and optimal for this specific P.

First, notice the algorithm is feasible since it never makes too much change (by constraining $p_{\text{opt}} \leq n$) and it never makes too little change since it only halts when $n = 0$. It’s guaranteed to halt since n strictly decreases every iteration.

In addition, we argue that setting p_{opt} to $p_{\text{max}} = \max\{p \in P : p \leq n\}$ is optimal. In the direction of contradiction, assume it’s actually optimal to omit this maximum element $p_{\text{max}} = 2^s \leq n$ from the coins. (Note that p_{max} can be written as a power of two since all elements of P can be written in this form.) This optimal solution must sum to $n \geq 2^s$, using only the elements
$$\{1,2,4,8,\ldots,2^{s-1}\}$$
since using any elements larger than p_{max} would make too much change by construction of p_{max}. By the lemma, a sublist of this optimal solution must sum to exactly 2^s.
Since the optimal solution does not contain p_{max}, this sublist must contain strictly more than one item. Replacing this sublist with p_{max} still sums to n, but uses fewer coins, contradicting the optimality of the solution.
Therefore, our assumption must have been incorrect, and the optimal solution must contain p_{max}, proving the optimality of the greedy solution.